Math, asked by AhujaTanishq2473, 1 year ago

Abc is right angled triangle where angle b is 90°and ab=8 cm and bc=6 cm find diameter of circle inscribed in the triangle

Answers

Answered by mkrishnan
2

Answer:

Step-by-step explanation:

IF A CIRCLE INSCRIBED  A RIGHT ANGLED TRIANGLE  

THEN THE DIAMETER IS HYPOTENUSE

AC =\sqrt{AB^2+BC^2} =\sqrt{8^2+6^2}=\sqrt{64+36} =\sqrt{100} =10  cm

DIAMETER = 10 cm

Answered by Anonymous
10

ac =  \sqrt{ {ab}^{2} +  {bc}^{2}  }  \\  \\  =  \geqslant ac =  \sqrt{ {8}^{2}  +  {6}^{2} }  \\  \\  =  \geqslant ac =   \sqrt{64 + 36}  \\  \\  =  \geqslant ac =  \sqrt{100}  \\  \\  =  \geqslant ac = 10


Brâiñlynêha: hlo
Brâiñlynêha: inbox my new account
Brâiñlynêha: i can follow u
Similar questions