ABC is triangle right angled at A with AB=AC. bisector of angle A meets BC at D . prove that BC=2AD.
Answers
Answered by
4
In Δ , ABC right angled at A and AB = AC
Hence ∠ A = ∠ B
We know that Sum of angles of a triangle = 180º
∠A+ ∠B+ ∠C=180º
90º+∠B+∠B=180º
2∠B=180º -90º
2∠B=90º
∠B=45º………………………………………..(i)
ALSO , AD is the bisector of BAC
So , ∠BAD = ∠CAD = 90º/2 = 45º …………………………….(ii)
∠BAD = ∠ABC
SO, AD = BD ………………………………(iii) .
Similarly angle CAD = angle ACD
So, AD = DC ………………………………..(iv)
adding equation (iii) and (iv)
We will get, AD + AD = BD+DC
2AD = BC
Hence ∠ A = ∠ B
We know that Sum of angles of a triangle = 180º
∠A+ ∠B+ ∠C=180º
90º+∠B+∠B=180º
2∠B=180º -90º
2∠B=90º
∠B=45º………………………………………..(i)
ALSO , AD is the bisector of BAC
So , ∠BAD = ∠CAD = 90º/2 = 45º …………………………….(ii)
∠BAD = ∠ABC
SO, AD = BD ………………………………(iii) .
Similarly angle CAD = angle ACD
So, AD = DC ………………………………..(iv)
adding equation (iii) and (iv)
We will get, AD + AD = BD+DC
2AD = BC
Similar questions