ABC is triangle the bisector of exterior angle at angle B and bisector of angle C intersect each other at D prove that angle D =1/2 angle A
Answers
Answered by
3
Answer:
D=1/2A
Step-by-step explanation:
In ABC,
A+B+C = 180° [Angle sum property] (eq. 1)
In BCD,
B+C+D = 180° [Angle sum property]
(eq. 2)
B+2(angle 1) =180° [Straight line property]
B=180-2(angle 1) (eq. 3)
C=180-2(angle 2) (eq. 4)
Now, substitute the values
A+180-2(angle 1)+180-2(angle 2)=180°
A+180-2(angle 1+ angle 2) =0
Now, In BCD,
B+C+D=180° [Straight line property]
angle 1+ angle 2=180°-D (eq. 5)
Now, substitute the values,
A+180-2(180°-D)=0
A+180-360+2D=0
A-180+2D=0
A+2D=180
D=90-1/2A
Hence proved.....
Similar questions