Math, asked by srirangambhargav5, 9 months ago

ABC is variable triangle whose centroid is fixed at (5,5) if BC=13 such that B and C moves on x and y axis respectively.the locus of A is​

Answers

Answered by sreehasinimarturi
6

Answer:

Let centroid Q(h,k).

Clearly, centroid = (x1 +x2 +x3/3 , y1 + y2+ y3/3) where x1/2/3, y1/2/3 are coordinates of vertices.

So we get h=(1+sint +cost/3) and k=(sint -cost+2/3)

On rearranging and adding, we get

3/2(h+k-1) = sint

And

3/2(h-k+1/3) = cost

Also, to eliminate t, put formula sin^2t + cos^2t = 1

Rearrange with above values of sint and cost, and in final expression replace h by x and k by y.

Thus you get the required locus.

Step-by-step explanation:

hello hope that helps you

please mark me as brainliest

Answered by vinod04jangid
1

Answer: The equation of locus of point A is x^{2} + y^{2}  - 30x - 30y + 281 = 0

Step-by-step explanation:

Given:ABC is variable triangle whose centroid is fixed at (5,5) if BC=13 such that B and C moves on x and y axis respectively.

To find: We have to find the equation of locus of A.

Explanation:

Step 1: On applying the pythagoras theorem in Δ OBC we have,

                                 a^{2}  + b^{2}  = (BC)^{2}

                                 a^{2}  + b^{2}  = (13)^{2}

                                 a^{2}  + b^{2}  = 169         (1)

Step 2:As we know the centroid of ΔABC is fixed at (5,5), so we have,

                                (\frac{x_{1}+x_{2}+x_{3}   }{3} ) (\frac{y_{1}+y_{2}+y_{3}   }{y} ) = (5,5)

Step 3: On comparison we get,

                                 \frac{a+x}{3} = 5  

                              a+x = 5 × 3

                              a + x = 15

                                    a = 15 - h

and                            \frac{b + y}{3}  = 5

                               b + y = 5 × 3

                               b + y = 15

                                     b = 15 - y

Step 4:Substituting the value of a and b in equation (1), we have,

                                             a^{2}  + b^{2}  = 169

⇒                     (15 - x)^{2} + (15 - y)^{2}  = 169

⇒   225 - 30x + x^{2} + 225 -30y + y^{2}  = 169

⇒             x^{2} + y^{2}  - 30x - 30y +450 = 169                                                              

⇒   x^{2} + y^{2}  - 30x - 30y +450 - 169 = 0

⇒             x^{2} + y^{2}  - 30x - 30y + 281 = 0

Hence, the equation of locus of point A is x^{2} + y^{2}  - 30x - 30y + 281 = 0.

#SPJ2

What is centroid of triangle ?

https://brainly.in/question/1064693

Equation Of the locus of the centroid of the triangle?

https://brainly.in/question/789225

               

               

Similar questions