Math, asked by sanarewandkar, 7 months ago

∆ABC ~ ∆PQR, IF AB = 5, PQ = 10, then find the value of
A (∆ABC):A (∆PQR)

Answers

Answered by fearlessgirl24
3

Answer:

1:2

Step-by-step explanation:

As ΔABC~ΔPQR

AB/PQ =BC/QR = AC/PR

5/10 = BC/QR = AC/PQ

ΔABC/ΔPQR=1/2 =BC/QR=AC/PR

Answered by ItzAditt007
6

Answer:-

Yiur Answer is 1:4.

Explanation:-

Given:-

  • \tt\triangle ABC\sim\triangle PQR.

  • AB = 5.

  • PQ = 10.

To Find:-

  • \tt A(\triangle ABC) : A(\triangle PQR).

Formula Used:-

\\ \large\purple{\longrightarrow\boxed{\orange{\bf A \ratio a = (S\ratio s)^2.}}}

Where,

  • A : a is ratio of areas of two similar triangles.

  • S : s is the ratio of any two corresponding sides of the similar triangles.

So Here,

  • A : a = ?? [To Find].

  • \tt S\ratio s = 5\ratio 10 =1\ratio 2.

Now,

By using formula we get

\\ \bf\mapsto A \ratio a = (S\ratio s)^2.

\\ \tt\mapsto A(\triangle ABC) \ratio A(\triangle PQR) = (1\ratio 2)^2.

\\ \tt\mapsto A(\triangle ABC) \ratio A(\triangle PQR) =(1  \times 1) \ratio(2 \times 2).

 \\  \red{\mapsto \boxed{ \blue{ \bf A(\triangle ABC) \ratio A(\triangle PQR) =1 \ratio4.}}}

Therefore Area of triangle ABC : Area of triangle PQR = 1:4.

Similar questions