Math, asked by chandana3261, 6 months ago

∆ABC~∆PQRand ar (∆ABC):ar(∆PQR)=16:25.if QR=15cm,then find BC​

Answers

Answered by Anonymous
62

 \bf \huge{ \orange{ \underline{ \underline{ \:Question:}}}}

∆ABC~∆PQRand ar (∆ABC):ar(∆PQR)=16:25.if QR=15cm,then find BC

 \bf \huge{ \orange{ \underline{  \underline{Answer:}}}}

 \sf{ \pink{ \underline{Given:-}}}

  • ar ( ABC )/ ar ( PQR ) = 16/25
  • QR = 15 cm

 \sf { \pink{ \underline{ \: To \: \: Find :-}}}

  • Find BC

 \sf { \pink{ \underline{Soln :-}}}

  • ar ( ABC ) = 16
  • ar ( PQR ) = 25

The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

 \large \implies \sf \:  \frac{16}{25}  =    \left(\frac{BC}{QR} \right)  ^{2}  \\  \\  \large \implies \sf \: \frac{16}{25}  =  \left(\frac{BC}{15} \right)  ^{2} \\  \\ \large \implies \sf \: \frac{16}{25}  =  \frac{ {{BC}}^{2} }{225}  \\  \\  \large \implies \sf \: {(BC)}^{2}  =  \frac{3600}{25}  \\  \\  \large \implies \sf \: {(BC)}^{2} = 144 \\  \\ \large \implies \sf \: {BC} =  \sqrt{144}  \\  \\ \large \implies \sf \: {BC} = 12

° BC is 12 cm....

Similar questions