Math, asked by uffmili, 6 months ago

ABCD is a cyclic quadrilateral . If ∠A= 2x° , ∠B=6y+10° , ∠C= 2x+y° and ∠D= x + 10° find the smallest angle.

Answers

Answered by CuteAnswerer
5

DIAGRAM :

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(6,1)\put(0.4,0.5){\bf D}\qbezier(1,1)(1,1)(1.6,4)\put(6.2,0.5){\bf C}\qbezier(1.6,4)(1.6,4)(6.6,4)\put(1,4){\bf A}\qbezier(6,1)(6,1)(6.6,4)\put(6.9,3.8){\bf B}\end{picture}

GIVEN :

  • Angles of the quadrilateral are (2x)°,(6y+10)°, (2x+y)°and (x+10)°.

TO FIND :

  • The smallest angle.

SOLUTION :

As we know that,

  • \boxed{\bf {Sum\:of\:all\:angles=360^{\circ}}}

Substituting the given values :

:\longrightarrow \sf 2x+(6y+10)+(2x+y)+(x+10)=360\\ \\

:\longrightarrow \sf 2x+6y+10+2x+y+x+10=360 \\ \\

:\longrightarrow \sf 2x+2x+x+6y+y+10+10=360 \\ \\

:\longrightarrow \sf 5x+7y+20=360 \\ \\

:\longrightarrow \sf 5x+7y=360-20\\ \\

:\longrightarrow\tt 5x+7y=340\: ....(1)

  • Again ,

:\longrightarrow \sf \angle A+ \angle B=180^ {\circ}\\ \\

:\longrightarrow\sf 2x+6y+10=180\\ \\

:\longrightarrow\sf 2x+6y=180-10\\ \\

:\longrightarrow \tt 2x+6y=170\: .... (2)

  • Now use elimination method by multiplying 2 in eq (1) and multiplying 5 in eq (2) we get,

\tt 10x+14y=680\: ....(3)\\

\tt 10x+30y=850\: ....(4)

_____________________________

Subtract eq (3) from eq (4) :

:\longrightarrow \tt 16y=170 \\ \\

:\longrightarrow \tt {y =  \cancel{\dfrac{170}{16}} } \\  \\

:\longrightarrow{\underline{\boxed{\bf{y=10.625}}}}

Substitute the value of y in eq (3) :

:\longrightarrow \sf 10x+14 \times10.625=680\\ \\

:\longrightarrow \sf 10x+148.75=680\\ \\

:\longrightarrow \sf 10x=680 - 148.75\\ \\

:\longrightarrow \sf 10x=531.25\\ \\

:\longrightarrow \sf x= \cancel{\dfrac{531.25}{10}}\\ \\

 : \longrightarrow{\underline{\boxed{\bf {x=53.125}}}}

_______________________

Hence , the angles are :

  • (2x)° = (2×53.125)°= 106.25°

  • (6y+10)°=(6×10.625+10)°=73.75°

  • (2x+y)°=(2×53.125+ 10.625)°=106.25+10.625=116.875°

  • (x+10)°=(53.125+10)°= 63.125°

\huge {\therefore } \bf {\angle D} is the smallest angle.

Similar questions