Math, asked by Isha1267, 5 months ago

ABCD is a cyclic quadrilateral in which <BAD=75°, <ABD=58° and <ADC= 77°, AC and BD bisects at P. Then find <DPC.​

Attachments:

Answers

Answered by MysteriousLadki
70

Gi᭄ven Question:-

ABCD is a cyclic quadrilateral in which ∠BAD=75°, ∠ABD=58° and ∠ADC= 77°, AC and BD bisects at P. Then find ∠DPC.

Re᭄quired Answer:-

Measure of ∠DPC is 92°.

Ex᭄planation:-

 \large \tt \red{Given:- }

➔ABCD is a cyclic quadrilateral in which ∠BAD=75°, ∠ABD=58° and ∠ADC= 77°.

➔AC and BD bisects at P.

 \large \tt \red{To  \: Find:-  }

➔∠DPC

 \large \tt \red{Cracking:- }

➔ABCD is a cyclic quadrilateral whose vertices all lie on a single circle.

➔Angles in same segment of circle are equal, i.e.

  :  \leadsto\tt{ \angle DBA= \angle DCA=58 ^\circ}

In ΔDCA:-

 \implies \tt{  {58}^{ \circ}  +{77}^{ \circ}   +  \angle DCA ={180}^{ \circ}   }

 \implies \tt{  {135}^{ \circ}    +  \angle DCA ={180}^{ \circ}   }

 \implies \tt{  \angle DCA ={180}^{ \circ}    -  {135}^{ \circ}  }

 \implies \tt{  \angle DCA ={45}^{ \circ}    }

So now,

 \implies \tt{ \angle PAB= \angle BAD- \angle DAC}

 \implies \tt{\angle PAB ={75}^{ \circ}    -  {45}^{ \circ}  }

 \implies \tt{\angle PAB ={30}^{ \circ}      }

In ΔPAB :-

  \implies \tt{\angle PAB+\angle PBA +\angle BPA=180^\circ}

   \implies\tt{30^\circ+58^\circ+\angle BPA=180^\circ}

   \implies\tt{88^\circ+\angle BPA=180^\circ}

   \implies\tt{\angle BPA=180^\circ -88^\circ }

  \large\implies\tt{\angle BPA=92^\circ }

 \huge { \boxed{ \underline{ \tt{ \red{So, the \:  value \:  of  \: \angle BPA  \: is \:  92^\circ. }}}}}

Similar questions