ABCD is a cyclic quadrilateral whose diagonal intersect at point E. If <DBC=70°, <BAC=30°, find <BCD. Further, if AB=BC, find<ECD
Answers
Given :
- ABCD is a cyclic quaderilateral
- ∠DBC = 70°
- ∠BAC = 30°
- AB = BC
To find :
- ∠ECD
- ∠BCD
According to the question,
⇒ ∠BDC = ∠BAC
⇒ ∠BAC = 30°
Reason : Angle in the same segment
In △BCD,
⇒ ∠BCD + ∠DBC + ∠BDC = 180°
⇒ ∠BCD + 70° + 30° = 180°
⇒ ∠BCD + 100° = 180°
⇒ ∠BCD = 180° - 100°
⇒ ∠BCD = 80°
⇒ ∠BAC = ∠BCA
⇒∠BCA = 30°
Reason : Radius
⇒ ∠ECD = ∠BCD - ∠BCA
⇒ ∠ECD = 80° - 30°
⇒ ∠ECD = 50°
So,
- ∠BCD = 80°
- ∠ECD = 50°
___________________
Theorem 1 :
The angle subtended by an arc of a circle at the centre is doubled the angle subtended by it at any point on the remaining part of the circle.
Theorem 2 :
The angle in a semicircle is a right angle.
Theorem 3 :
Angles in the same segment of a circle are equal.
✦Given:-
⮕ABCD is a Cyclic quadrilateral
⮕Diagonals of quadrilateral intersect at point E
⮕∠ DBC = 70°
⮕∠ BAC = 30°
⮕AB = BC
✦To Find:-
⮕∠ BCD
⮕∠ ECD
✦Solution:-
For Chord CD,
⮕∠ CBD = ∠ CAD
⮕∠ CAD = 70°
⮕∠ BAD = ∠ BAC + ∠ CAD
⮕∠ BAD = 30 + 70
⮕∠ BAD = 100°
⮕∠ BCD + ∠ BAD = 180° ( PROPERTY OF CYCLIC QUAD)
⮕∠ BCD + 100 = 180°
⮕∠ BCD = 180 - 100
⮕∠ BCD = 80°
⮕In Triangle ABC
⮕AB = BC
⮕∠ BCA = ∠ CAB
⮕∠ BCD = 80°
⮕∠ BCA + ∠ BCD = 80°
⮕30° + ∠ BCD = 80°
⮕∠ BCD = 80 - 30
⮕∠ BCD = 50°
⮕∠ BCD = ∠ ACD = ∠ ECD = 50°
⮕Hence, ∠ BCD = 80° , ∠ ECD = 50°.