ABCD is a diameter of a circle of radius 6cm .The lengths AB,BC,CD are equal . semicircles are drawn on AB and BD as diameter as shown in the given figure . Find the area of shaded region
Answers
Answered by
14
Since, Length of AB, BC and CD are equal.
Radius of circle = 6 cm
Now, AD = 2 × 6 = 12 cm
⇒ AB + BC + CD = 12
⇒3AB = 12
⇒ \: AB \: = \: \frac{12}{3}⇒AB=
3
12
⇒AB=4cm
⇒AB=BC=CD=4cm
Radius of semicircle AB=2cm
Radius of semicircle BC=4cm
Radius of semicircle AD=6cm
Area of the shaded region = Area of semicircle (AB+AD) − Area of semicircle (BD)
⇒ Area \: of \: shaded \: region = \: 0.5\pi( {2}^{2} + {6}^{2}) \: - 0.5\pi {(4)}^{2}⇒ Areaofshadedregion =0.5π(2
2
+6
2
)−0.5π(4)
2
⇒ Area \: of \: shaded \: region = \: 0.6\pi(4 + 36) - 0.5\pi \times 16⇒ Areaofshadedregion =0.6π(4+36)−0.5π×16
⇒ Area \: of \: shaded \: region = \: 20\pi - 8\pi⇒ Areaofshadedregion =20π−8π
⇒ Area \: of \: shaded \: region = 12\pi {cm}^{2}⇒ Areaofshadedregion =12πcm
2
Similar questions