Math, asked by swetanks2007, 15 hours ago

ABCD is a parallelogram AB = 7, BC = 8 and AC = 13 then distance between AB and CD is equal to:

Answers

Answered by geetavermagv24
0

ABCD is a parallelogram AB = 7, BC = 8 and AC = 13 then distance between AB and CD is equal to:

Answered by Syamkumarr
1

Answer:

The distance between AB and CD is equal to 4\sqrt{3} cm

Step-by-step explanation:

Given data

ABCD is a parallelogram  

and AB = 7 cm, BC = 8 cm, AC = 13 cm

⇒ CD = 7 cm [ parallel sides are equal in parallelogram ]

⇒ Here we need to find distance between AB and CD which will be the height of the parallelogram

⇒ In a parallelogram, diagonal will divide parallelogram into 2 equal triangles

⇒ area of the parallelogram = 2 × area of triangle (which is formed) _ (1)

⇒ so that ABCD parallelogram can split into 2 triangles as ΔABC and ΔACD

⇒ in triangle ABC, AB = 7 cm, BC = 8 cm, AC = 13 cm  [ from given data ]

⇒ area of the triangle = \sqrt{ s(s-a)(s-b)(s-c)}    [ s = \frac{7+8+13}{2} = 14 cm]

                             ⇒ \sqrt{ 14(14-7)(14-8)(14-13) }

                             ⇒ \sqrt{14(7)(6)(1) } =  \sqrt{ 7(2)(7)(3)(2)}  

                             ⇒ 7(2)\sqrt{3} = 14\sqrt{3} cm

⇒ Area of the parallelogram =  2 × area of triangle ABC   [from (1) ]

                                               = 2 (14\sqrt{3}) = 28\sqrt{3}  

we know that area of parallelogram = base × height = bh  

                                  ⇒ bh = 28\sqrt{3}    

                                  ⇒ 7(h) = 28 \sqrt{3}   [ base CD = 7 from given data ]  

                                  ⇒ h = 4\sqrt{3} cm                                                                        

Similar questions