Math, asked by Impanaki, 8 months ago

ABCD is a parallelogram and angle cab=35° .calculate the angles of the parallelogram ABCD​

Answers

Answered by raotd
1

Answer:

Step-by-step explanation:Given, ABCD is a parallelogram having ∠BAO = 35°, ∠DAO = 40° and ∠COD = 105°

Now, ∠COD = ∠AOB =  105° [vertically opposite angles]

In ΔAOB, by angle sum property of triangle,  

⇒ ∠AOB + ∠OAB + ∠ABO =  180°

⇒ 105° + 35° + ∠ABO =  180°

⇒ ∠ABO =  40°

Again, adjacent angles of a parallelogram are supplementary.

⇒ ∠DAB + ∠ABC =  180°

⇒ ∠DAO + ∠OAB + ∠ABO + ∠CBO  =  180°

⇒ 40° + 35° + 40° + ∠CBO  =  180°

⇒ ∠CBO  = ∠CBD =  180° - 115° = 65°  

⇒ ∠CBD =  65°  

In ΔABC, by angle sum property of triangle,  

⇒ ∠CAB + ∠ABC + ∠ACB =  180°

⇒ 35° + ∠ABO + ∠CBO + ∠ACB =  180°

⇒ 35° + 40° + 65° + ∠ACB =  180°

⇒ ∠ACB = 180° - 140° = 40°  

⇒ ∠ACB = 40°  

Now, opposite angles of a parallelogram are equal

⇒ ∠A =∠C  

⇒ ∠C  =  75°

On applying angle sum property of triangle in BCD, we get

⇒ ∠C  + ∠CBD + ∠CDB =  180°

⇒ 75°  + 65° + ∠CDB =  180°

⇒ ∠CDB =  40°

or ∠ODC =  40°

if it helps you then don't forget to follow me.

Answered by keerthijaya7777
0

Step-by-step explanation:

Data: ABCD is a parallelogram AD ∥ BC and DC ∥ AB.

The diagonals AC and BD intersect at O

∠DAC = 40

∠CAB = 35

and ∠DOC = 110

To find : (1)∠ABO (2) ∠ADC (3) ∠ACB (4)∠CBD

Proof:∠DAC + ∠CAB = ∠A

40

+ 35

= ∠A

∠A = 75

∠C = ∠A=75

(Opposite angles of parallelogram are equal)

∠D = ∠A = 180

(Supplementary angles)

∠D = 180

-75

= 105

∠B = ∠D = 105

(Opposite angles of parallelogram are equal)

∠DOC = ∠AOB = 110

Vertically opposite angles)

In AOB, ∠A + ∠O + ∠B = 180

(Sum of all angles of a triangle is 180

)

35

+ 110

+ ∠B = 180

∠B = 180

-145

(1) ∠ABO = 35

(2) ∠ADC = 105

(Proved)

(3) ∠ACB = ∠CBD = 40

(Alternate angles, AD || BC)

∠CBD = 105

-35

(4) ∠CBD = 70

(1) ∠ABO = 35

(2) ∠ADC = 105

(3) ∠ACB = 40

(4)∠CBD = 70

Similar questions