Math, asked by xsanghongchui, 1 month ago

ABCD is a parallelogram and P is any point on the side CD. Prove that area of AAPD + area of ABCP = area of AABP​

Answers

Answered by hardiksharma50
1

Answer:

Step-by-step explanation:

Given ABCD is a parallelogram area is 100 sq. cm

P is a point inside the parallelogram

Construction : Let us drawn a line passing through P such that PQ||AB.

AB||CD _____ (1)

AB || PQ _____ (2)

from (1) & (2) CD || PQ  

AB||PQ (By construction)

PA||QB (∵ PA and QB is a part of parallelogram DA and CB)

∴ ABQP is a parallelogram.

Similarly we can prove that PQCD is a parallelogram.

parallelogram ABQP and ΔAPB lie on same base and same parallels ∴ar(PAB)=  

2

1

ar(ABQP)

or 2ar(ΔPAB)=ar(ABQP)

Parallelogram PQCD and ΔDPC lie on same base and same parallels ∴ar(ΔDPC)=  

2

1

ar((11gmPQCD))

or 2.ar(ΔDPC)=ar(11gmPQCD)

ar (11 gm PQCD) = 100cm  

2

 (given)

⇒ar(11gmABPQ)+ar(11PQCD)=100cm  

2

 

2.ar(ΔPAB)+2ar(ADPC)=100cm  

2

 

2.ar[(ΔPAB)+(ΔDPC)]=100cm  

2

 

ar.(ΔPAB)+ar(ΔDPC)=  

2

100

cm  

2

 

ar(ΔPAB)+ar(ΔDPC)=50cm  

2

 

∴ar(ΔAPB)+ar(ΔCPD)=50cm  

2

Similar questions