Math, asked by vaishalidhawale3865, 1 month ago

ABCD is a parallelogram angle A=3x-2 angle C =50-x find angle A

Answers

Answered by brainlyyourfather
3

\huge\red{\boxed{\orange{\mathcal{\overbrace{\underbrace{\fcolorbox{red}{pink}{\underline{\red{❥Answer࿐}}}}}}}}}

Since opposite angles of a parallelogram are equal. Therefore,

3x−2=50−x⇒x=13

(3x−2)

=3(13)−2=37

The measures of the adjacent angles of a parallelogram add up to be 180 degrees, or they are supplementary.

Another angle =180−37=143

The measure of each angle of the parallelogram.

37 ∘

,143 ∘

,37 ∘

,143 ∘

Answered by KnightLyfe
7

Given Information:

  • ABCD is a parallelogram
  • ∠A is (3x-2)°
  • ∠C is (50-x)°

Need to Find:

  • Measure of ∠A

Property of Parallelogram used here:

  • In a parallelogram, opposite angles are equal.

Solution:

As we know, the opposite angles of parallelogram are equal. So,

\: \: \: \: \: \: \: \: \: \longrightarrow\sf{\angle A=\angle C}

\: \: \: \: \: \: \: \: \: \longrightarrow\sf{{(3x-2)}^{\circ}={(50-x)}^{\circ}}

\: \: \: \: \: \: \: \: \: \longrightarrow\sf{3x-2=50-x}

\: \: \: \: \: \: \: \: \: \longrightarrow\sf{3x+x=50+2}

\: \: \: \: \: \: \: \: \: \longrightarrow\sf{4x=52}

\: \: \: \: \: \: \: \: \: \longrightarrow\sf{x=\dfrac{52}{4}}

\: \: \: \: \: \: \: \: \: \longrightarrow\bold{x=13}

~Substituting value of 'x' in ∠A,

\: \: \: \: \: \: \: \: \: \implies\sf{\angle A={(3x-2)}^{\circ}}

\: \: \: \: \: \: \: \: \: \implies\sf{\angle A={(3\times 13-2)}^{\circ}}

\: \: \: \: \: \: \: \: \: \implies\sf{\angle A={(39-2)}^{\circ}}

\: \: \: \: \: \: \: \: \: \implies\bold{\angle A={37}^{\circ}}

Required Answer:

\: \: \: \: \: \leadsto ∠A measure 37°

Similar questions