ABCD is a parallelogram,angle A=3x-5° and angle B=9x+5°,then x=?
Answers
Given:-
- ∠A of parallelogram ABCD is 3x - 5°.
- ∠B of parallelogram ABCD is 9x + 5°.
To find:-
- Value of x.
Solution:-
We know that,
Sum of two adjacent angles of parallelogram is 180°.
So,
➝ ∠A + ∠B = 180°
➝ (3x - 5°) + (9x + 5°) = 180°
➝ 3x - 5° + 9x + 5° = 180°
➝ 12x -5 + 5 = 180°
➝ 12x = 180°
➝ x = 180°/12
➝ x = 15°
Verification:-
➝ ∠A + ∠B = 180°
➝ (3x - 5°) + (9x + 5°) = 180°
- Put x = 15°
➝ (3×15° - 5°) + (9×15° + 5°) = 180°
➝ 45° - 5° + 135° + 5° = 180°
➝ 40° + 140° = 180°
➝ 180° = 180°
Hence, Verified.
Therefore,
Value of x is 15°.
ANSWER:
IN A PARALLELOGRAM ABCD ARE THE VERTEX
ANGLE A = 3X- 5
ANGLE B= 9X +5
ANGLE A + ANGLE B = 180 ( SUM OF TWO CO-
INTERIOR ANGLES)
(3X-5) + (9X+5) =180
3X-5 + 9X+ 5 = 180
12X = 180
X = 180/ 12
x = 15
ANGLE A = 40 °
ANGLE B = 140°
ASK YOUR DOUBT IN COMMENT BOX
FOLLOW ME TO ASK YOUR QUESTION
LIKE MY ANSWER