ABCD is a parallelogram. Find x, y and z.
Attachments:
Answers
Answered by
163
Angle A = Angle C(opp angles of parallelogram are equal)
125=56+y
y=69
Angle A + Angle D =180(adjacent angles of parallelogram are supplementary)
125+x=180
x=55
Angle A +x+y+z=360
125+55+69+z= 360
249+z= 360
z=111
125=56+y
y=69
Angle A + Angle D =180(adjacent angles of parallelogram are supplementary)
125+x=180
x=55
Angle A +x+y+z=360
125+55+69+z= 360
249+z= 360
z=111
Answered by
479
--------------------------
Question: ABCD is a parallelogram. Find 'x', 'y' and 'z'.
--------------------------
x = 55°
y = 69°
z = 111°
--------------------------
Step by step Explanation.
Given
ABCD is a parallelogram.
∠A = 125°
∠BCZ = 56°
To Find
x, y and z.
Proof
For 'X'
x + 125° = 180° [Co - Interior Angles]
x = 180° - 125°
x = 55°
For 'Y'
∠A = ∠C [Opp. angles of a parallelogram are equal]
125° = y + 56°
125° - 56° = y
y = 69°
For 'Z'
ADCZ is a quadrilateral.
∠A + x + y + z = 360°
125° + 55° + 69° + z = 360°
249° + z = 360°
z = 360° - 249°
z = 111°
-----------------------------
Regards,
Tomboyish44.
Similar questions