Math, asked by Nishant1000, 1 year ago

ABCD is a parallelogram. Find x, y and z.

Attachments:

Answers

Answered by arjunb963
163
Angle A = Angle C(opp angles of parallelogram are equal)
125=56+y
y=69

Angle A + Angle D =180(adjacent angles of parallelogram are supplementary)
125+x=180
x=55

Angle A +x+y+z=360
125+55+69+z= 360
249+z= 360
z=111
Answered by Tomboyish44
479

\mathbb{ELLO \ THERE!}

--------------------------

Question: ABCD is a parallelogram. Find 'x', 'y' and 'z'.

--------------------------

\mathbb{ANSWER}

x = 55°

y = 69°

z = 111°

--------------------------

Step by step Explanation.

Given

ABCD is a parallelogram.

∠A = 125°

∠BCZ = 56°


To Find

x, y and z.


Proof


For 'X'

x + 125° = 180° [Co - Interior Angles]

x = 180° - 125°

x = 55°


For 'Y'

∠A = ∠C [Opp. angles of a parallelogram are equal]

125° = y + 56°

125° - 56° = y

y = 69°


For 'Z'

ADCZ is a quadrilateral.

∠A + x + y + z = 360°

125° + 55° + 69° + z = 360°

249° + z = 360°

z = 360° - 249°

z = 111°

-----------------------------

Regards,

Tomboyish44.

Similar questions