Math, asked by AnuskaPalai, 8 months ago

ABCD is a parallelogram. If angle bi sector of angle A and angle B meet at P. Prove that angle APB = 180 - 1/2 ( angle A+angle B) ​

Attachments:

Answers

Answered by MysteriousAryan
4

\huge{\underline{\underline{\sf{Proof}}}}

In Δ APB:

∠APB+ ∠BAP+ ∠PBA = 180°

i.e

∠APB  + \frac{∠A}{2}  +  \frac{∠B}{2} = 180

So

 ∠APB = 180 - ( \frac{∠A}{2}  +  \frac{∠B}{2} )   -  - (1)

we know that :

∠A +  ∠B + ∠C +  ∠D = 360

(SUM OF THE ANGLES OF QUADRILATERAL)

So

 \frac{∠A}{2}  +  \frac{∠B}{2}  +  \frac{∠C}{2}  +  \frac{∠D}{2}  = 180

 \frac{1}{2} (\frac{∠C}{2}  +  \frac{∠D}{2}) = 180 - (\frac{∠A}{2}  +  \frac{∠B}{2}) -  - (2)

Look at eq (1) and eq (2)

we get

∠APB = 180°- \frac{1}{2} (\frac{∠C}{2}  +  \frac{∠D}{2})

Hence Proved

Similar questions