Math, asked by ellapaddie, 10 months ago

ABCD is a parallelogram in which AB = 20 cm, BC = 13 cm, AC = 21 cm. Find the area of parallelogram ABCD

Answers

Answered by Abhishek474241
46

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • ABCD is a //gm
  • in which

AB = 20cm and BC =13cm

  • AC=21 cm

{\sf{\green{\underline{\large{To\:find}}}}}

  • Area of //gm

{\sf{\pink{\underline{\Large{Explanation}}}}}

Diagram

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(8.6,3){\large{A}}\put(7.7,0.9){\large{B}}\put(9.5,0.7){\sf{\large{Base}}}\put(11.1,0.9){\large{C}}\put(8,1){\line(1,0){3}}\put(11,1){\line(1,2){1}}\put(9,3){\line(3,0){3}}\put(7.7,2){\large{$\sf\:side$}}\put(8,1){\line(1,2){1}}\put(12.1,3){\large{D}}\put(8,1){\line(2,1){4}}\put(11,1){\line(-1,1){2}}\end{picture}

Taking Small ∆s

∆ABD

\setlength{\unitlength}{5mm}\begin{picture}(5,5)\put(0,0){\line(1,0){8}}\put(0,0){\line(2,1){6}}\put(8,0){\line(-2,3){2}}\end{picture}

Once Again

∆ABC

\setlength{\unitlength}{5mm}\begin{picture}(5,5)\put(0,0){\line(1,0){8}}\put(0,0){\line(2,1){6}}\put(8,0){\line(-2,3){2}}\end{picture}

Solution

∆ABD

From Heron's Formula

\tt\sqrt{S(S-A)(S-B)(S-C)}

\rightarrow\sf\dfrac{A+B+C}{2}

utting the value

\rightarrow\sf\dfrac{A+B+C}{2}

\rightarrow\sf\dfrac{13+21+20}{2}

\rightarrow\sf\dfrac{54}{2}

\rightarrow\sf{27}

\tt\sqrt{S(S-A)(S-B)(S-C)}

\rightarrow\tt\sqrt{27(27-13)(27-21)(27-20)}

\rightarrow\tt\sqrt{27(14)(6)(7)}

=>√3×3×3×7×2×3×2×7

=>3×3×2×7

=>126cm²

Properties of //gm

  • Opposite sides equal
  • Diagonal bisect the //gm in two equal area

Therefore

Area of ∆ABC =. Area of ∆ABD

Required area of //gm ABCD is

=>Area of ∆ABC + Area of ∆ABD=Area of //gm

=>126+126

=>252cm²


RvChaudharY50: Awesome.
Answered by sethrollins13
33

✯✯ QUESTION ✯✯

ABCD is a parallelogram in which AB = 20 cm, BC = 13 cm, AC = 21 cm. Find the area of parallelogram ABCD..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

Given : -

AB = 20cm , BC = 13cm , AC = 21 cm

Now : -

  • Area ΔABC = Area ΔCDA
  • Area (ABCD) = Area ΔACD + Area ΔABC

By Using Heron's Formula : -

Consider Δ ABC : -

\longmapsto\tt{a=20cm , b= 21cm , c=13cm}

\longmapsto\tt{S=\dfrac{a+b+c}{2}}

\longmapsto\tt{S=\dfrac{20+21+13}{2}}

\longmapsto\tt{S=\cancel\dfrac{54}{2}}

\longmapsto\tt{27cm}

Now : -

\longmapsto\tt{Area=\sqrt{s(s-a)(s-b)(s-c)}}

\longmapsto\tt{\sqrt{27(27-20)(27-21)(27-13)}}

\longmapsto\tt{\sqrt{27(7)(6)(14)}}

\longmapsto\tt{\sqrt{3}\times{3}\times{3}\times{7}\times{{3}\times{2}\times{7}\times{2}}}

\longmapsto\tt{3\times{3}\times{7}\times{2}}

\longmapsto\tt{126{cm}^{2}}

Area of Δ ABC = 126 cm²

\longmapsto\tt{Area\:of\:Quad.\:ABCD = 126\times{2}}

\longmapsto\tt{\large{\boxed{\boxed{\bold{\orange{\sf{252{cm}^{2}}}}}}}}

_______________________

Properties of Parallelogram : -

  • Opposite Sides of parallelogram are equal..
  • Opposite Angles of parallelogram are equal.
  • The diagonals of parallelogram bisects each other..

_______________________

Attachments:

RvChaudharY50: Excellent. ❤️
Similar questions