Math, asked by bhavikchudasam4291, 1 year ago

Abcd is a parallelogram in which ab=3i-6j+3k and ad = 6i+6j+3k. P is a point of ab such that ap

Answers

Answered by MaheswariS
1

Solution:

Concept used:


Area of a parallelogram having adjacent sides \vec{a}\:and\:\vec{b} is

|\vec{a}X\vec{b}|

\vec{AB}=3\vec{i}-6\vec{j}+3\vec{k}\\\vec{AD}=6\vec{i}+6\vec{j}+3\vec{k}


Area of paralleloram ABCD

=|\vec{AB}X\vec{AD}|



\vec{AB}X\vec{AD}


=\left|\begin{array}{ccc}\vec{i}&\vec{j}&\vec{k}\\3&-6&3\\6&6&3\end{array}\right|

=\vec{i}(-18-18)-\vec{j}(9-18)+\vec{k}(18+36)\\\\=-36\vec{i}+9\vec{j}+54\vec{k}\\\\=9(-4\vec{i}+\vec{j}+6\vec{k})


|\vec{AB}X\vec{AD}|=9\sqrt{{(-4)}^2+{1}^2+{6}^2}=9\sqrt{16+1+36}=9\sqrt{53}


Area of the parallelogram ABCD is

9\sqrt{53}square units


Similar questions