ABCD is a parallelogram in which E and F are mid – points of DC and AB respectively. If AE and DF intersect at X and CF and BE intersect at Y,then show that XEYF is a parallelogram. BEST ANSWER WILL BE MARKED AS BRAINLIEST. WRONG ANSWER WILL BE REPORTED.
Answers
Answered by
1
Step-by-step explanation:
AE=BE=
2
1
AB and CF=DF=
2
1
CD
But, AB=CD
∴
2
1
AB=
2
1
CD⇒BE=CF
Also, BE∥CF [∵AB∥CD]
∴ BEFC is a parallelogram.
⇒BC∥EF and BE=PH ...(i)
Now, BC∥EF
⇒AD∥EF [∵BC∥AD as ABCD is a ∥
gm
]
⇒AEFD is a parallelogram
⇒AE=GP ...(ii)
But, E is the mid-point of AB.
∴AE=BE
⇒GP=PH [Using (i) and (ii)]
solution
Answered by
3
Answer:
please mark as brainliest,Also please follow me........
Attachments:
Similar questions