Math, asked by nisharth93, 9 months ago

ABCD is a parallelogram. Its diagonals AC and BD intersect at O. If AC = 16cm, and
AO = x + 2, then x=

solutions please​

Answers

Answered by Sakshisingh027
3

Answer:

We know that in a triangle the line segment joining the mid points of two sides, is parallel to the third side and measures half of the third side.

In the triangle OAB, EF is the line joining the mid points of OA and OB. Hence EF = 1/2 AB.

In the triangle OBC, FG is the line joining the midpoints of OB and OC.

hence, FG = 1/2 BC

similarly, GH = 1/2 CD and HE = 1/2 DA

perimeter of the quadrilateral EFGH = 1/2 AB + 1/2 BC + 1/2 CD + 1/2 DA

= 1/2 * perimeter of parallelogram ABCD.

The ratio = 1/2

we also note that EFGH is a parallelogram and has area 1/4 th of ABCD.

Step-by-step explanation:

&lt;!DOCTYPE html&gt;</p><p></p><p>&lt;html lang="en"&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;title&gt;Shinchan&lt;/title&gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;div class="face"&gt;</p><p></p><p>&lt;div class="forhead"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="cheeks"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="ear"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="eyebrow left"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="eyebrow right"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="eye left"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="eye right"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="mouth"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="shy"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="shy right"&gt;&lt;/div&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>body {</p><p></p><p>background:#3e505e</p><p></p><p>}</p><p></p><p>.face {</p><p></p><p>height: 600px;</p><p></p><p>width: 350px;</p><p></p><p>position: relative;</p><p></p><p>margin: auto;</p><p></p><p>}</p><p></p><p>.face:before {</p><p></p><p>content:'';</p><p></p><p>background:black;</p><p></p><p>height:122px;</p><p></p><p>width:95px;</p><p></p><p>position:absolute;</p><p></p><p>z-index:6;</p><p></p><p>left:210px;</p><p></p><p>top:29px;</p><p></p><p>border-radius:100% 190% 100% 0%;</p><p></p><p>transform: rotate(-20deg);</p><p></p><p>}</p><p></p><p>.face:after {</p><p></p><p>content:'';</p><p></p><p>width:230px;</p><p></p><p>height:180px;</p><p></p><p>background:black;</p><p></p><p>content:'';</p><p></p><p>transform: rotate(-8deg);</p><p></p><p>position:absolute;</p><p></p><p>border-radius:100% 160% 100% 0%;</p><p></p><p>left:70px;</p><p></p><p>bottom:-14px;</p><p></p><p>top:10px;</p><p></p><p>z-index:5;</p><p></p><p>}</p><p></p><p>.forhead, .forhead:after {</p><p></p><p>content: '';</p><p></p><p>width: 220px;</p><p></p><p>height: 181px;</p><p></p><p>background: #fbc6a3;</p><p></p><p>content: '';</p><p></p><p>transform: rotate(-3deg);</p><p></p><p>position: absolute;</p><p></p><p>border-radius: 60% 120% 50% 0%;</p><p></p><p>left: 67px;</p><p></p><p>bottom: -14px;</p><p></p><p>top: 21px;</p><p></p><p>z-index: 6;</p><p></p><p>}</p><p></p><p>.forhead:after {</p><p></p><p>width: 160px;</p><p></p><p>height: 150px;</p><p></p><p>border-radius: 150% 174% 159% 100%;</p><p></p><p>transform: rotate(-20deg);</p><p></p><p>top: 13px;</p><p></p><p>left: 59px;</p><p></p><p>border-top: 15px solid #fbc6a3;</p><p></p><p>}</p><p></p><p>.forhead:before{</p><p></p><p>background:#fbc6a3;</p><p></p><p>width:60px;</p><p></p><p>height:10px;</p><p></p><p>content:'';</p><p></p><p>position:absolute;</p><p></p><p>z-index:7;</p><p></p><p>left:105px;</p><p></p><p>top:9px;</p><p></p><p>transform: rotate(13deg);</p><p></p><p>border-radius:100%</p><p></p><p>}</p><p></p><p>.ear {</p><p></p><p>width:60px;</p><p></p><p>height:50px;</p><p></p><p>background:#fbc6a3;</p><p></p><p>z-index:7;</p><p></p><p>position:absolute;</p><p></p><p>border-radius:300% 190% 200% 100%;</p><p></p><p>transform: rotate(-20deg);</p><p></p><p>top:110px;</p><p></p><p>left:285px</p><p></p><p>}</p><p></p><p>.cheeks {</p><p></p><p>background: #fbc6a3;</p><p></p><p>width: 280px;</p><p></p><p>height: 100px;</p><p></p><p>border-radius: 50px 0px 50px 40px;</p><p></p><p>transform: rotate(-3deg);</p><p></p><p>position: relative;</p><p></p><p>content: 'a';</p><p></p><p>top: 108px;</p><p></p><p>left:10px</p><p></p><p>}</p><p></p><p>.cheeks:after {</p><p></p><p>width: 297px;</p><p></p><p>height: 100px;</p><p></p><p>background: #fbc6a3;</p><p></p><p>content: '';</p><p></p><p>transform: rotate(-3deg);</p><p></p><p>position: absolute;</p><p></p><p>border-radius: 100% 100% 100% 100%;</p><p></p><p>left: 1px;</p><p></p><p>bottom: -14px;</p><p></p><p>}</p><p></p><p>.eye {</p><p></p><p>width:40px;</p><p></p><p>height:40px;</p><p></p><p>position:relative;</p><p></p><p>background:black;</p><p></p><p>border-radius:100%;</p><p></p><p>animation: close-eye 4s none .2s infinite;</p><p></p><p>}</p><p></p><p>.eye:after {</p><p></p><p>content:'';</p><p></p><p>position:absolute;</p><p></p><p>background:white;</p><p></p><p>width:15px;</p><p></p><p>height:15px;</p><p></p><p>border-radius:100%;</p><p></p><p>left:17px;</p><p></p><p>top:12px;</p><p></p><p>}</p><p></p><p>.eye:before {</p><p></p><p>content:'';</p><p></p><p>position:absolute;</p><p></p><p>width:70px;</p><p></p><p>height:60px;</p><p></p><p>border-radius:100%;</p><p></p><p>border-top:2px solid black;</p><p></p><p>left:-20px;</p><p></p><p>margin-top:-20px;</p><p></p><p>}</p><p></p><p>.eye.left,.eye.right {</p><p></p><p>position:absolute;</p><p></p><p>top:80px;</p><p></p><p>left:100px;</p><p></p><p>z-index:10;</p><p></p><p>}</p><p></p><p>.eye.right {</p><p></p><p>left:190px;</p><p></p><p>top:90px;</p><p></p><p>}</p><p></p><p>.eyebrow {</p><p></p><p>animation: eyebroani 2s linear .2s infinite;</p><p></p><p>}</p><p></p><p>.eyebrow,.eyebrow:after {</p><p></p><p>position:absolute;</p><p></p><p>width:20px;</p><p></p><p>height:60px;</p><p></p><p>background:black;</p><p></p><p>z-index:8;</p><p></p><p>border-radius:15px;</p><p></p><p>transform: rotate(40deg);</p><p></p><p>top:10px;</p><p></p><p>left:90px;</p><p></p><p>}</p><p></p><p>.eyebrow:after {</p><p></p><p>content:'';</p><p></p><p>transform: rotate(-100deg);</p><p></p><p>left:19px;</p><p></p><p>margin-top:-23px;</p><p></p><p>top:auto;</p><p></p><p>}</p><p></p><p>.eyebrow.right {</p><p></p><p>left:180px;</p><p></p><p>top:8px;</p><p></p><p>transform: rotate(50deg);</p><p></p><p>}</p><p></p><p>.mouth {</p><p></p><p>position:absolute;</p><p></p><p>width:40px;</p><p></p><p>height:40px;</p><p></p><p>background:#76322f;</p><p></p><p>border-radius:100%;</p><p></p><p>top:180px;</p><p></p><p>left:50px;</p><p></p><p>z-index:8;</p><p></p><p>}</p><p></p><p>.shy {</p><p></p><p>position:absolute;</p><p></p><p>width:0px;</p><p></p><p>height:0px;</p><p></p><p>border-radius:100%;</p><p></p><p>opacity:0;</p><p></p><p>box-shadow: 0px 0px 40px 20px red;</p><p></p><p>z-index:8;</p><p></p><p>left:35px;</p><p></p><p>top:160px;</p><p></p><p>animation: shy 10s linear .2s infinite;</p><p></p><p>}</p><p></p><p>.shy.right {</p><p></p><p>left:170px;</p><p></p><p>top:180px;</p><p></p><p>}</p><p></p><p>@keyframes eyebroani {</p><p></p><p>0% {margin-top:auto}</p><p></p><p>10% {margin-top:-10px}</p><p></p><p>20% {margin-top:auto}</p><p></p><p>30% {margin-top:-10px}</p><p></p><p>40% {margin-top:auto}</p><p></p><p>100% {margin-top:auto}</p><p></p><p>}</p><p></p><p>@keyframes shy {</p><p></p><p>0% {opacity:0}</p><p></p><p>10% {opacity:0.2}</p><p></p><p>90% {opacity:0.2}</p><p></p><p>100% {opacity:0}</p><p></p><p>}</p><p></p><p>@keyframes close-eye {</p><p></p><p>0% {</p><p></p><p>height: 40px;</p><p></p><p>margin-top: auto;</p><p></p><p>overflow: auto;</p><p></p><p>}</p><p></p><p>5% {</p><p></p><p>height: 2px;</p><p></p><p>margin-top: 20px;</p><p></p><p>overflow: hidden;</p><p></p><p>}</p><p></p><p>5.1% {</p><p></p><p>height: 40px;</p><p>.</p><p>margin-top:0;</p><p></p><p>overflow:visible;</p><p></p><p>}</p><p></p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;

Answered by dualadmire
0

The value of x is 6 cm.

Given: ABCD is a parallelogram. Its diagonals AC and BD intersect at O. If AC = 16 cm, and AO = x + 2,

To Find: The value of x.

Solution:

  1. We know that in a parallelogram, opposite sides are equal and parallel.
  2. Also, in a parallelogram, the point of intersection of the two diagonals divides the respective diagonals into two equal parts.

Coming to the numerical,

It is said that ABCD is a parallelogram. Its diagonals AC and BD intersect at O. So, from point (2) we can say that;

AO = OC = x + 2

AC = 16 cm

Now, we can frame an equation to find the value of 'x'.

          AO + OC = AC

     ⇒  x + 2 + x + 2 = 16

     ⇒ 2x + 4 = 16

     ⇒ 2x = 16 - 4

     ⇒  x = 12 / 2

             = 6 cm

Hence, the value of x is 6 cm.

#SPJ3

Similar questions