ABCD is a parallelogram o is any point on AC PQ parallel AB and LM parallel AD prove that area parallelogram DLOP=area parallelogram BMOQ
Answers
Answered by
85
FIGURE IS IN THE ATTACHMENT
Since,a diagonal of a parallelogram divides it into two Triangles of equal area.
Since, AO & OC are diagonals of a parallelogram AMOP & OQCL
ar(∆APO) = ar(∆AMO) ………..(1)
ar(∆OLC) = ar(∆OQC) ………..(2)
ar(∆ADC) = ar(∆ABC)
ar(∆APO) + ar(||gmDLOP) +ar(∆OLC) =
ar(∆AMO) + ar(||gm BMOP) +ar(∆OQC) …(3)
Subtract eq 1 & 2 from 3
ar(||gmDLOP) = ar(||gm BMOQ)
HOPE THIS WILL HELP YOU...
Since,a diagonal of a parallelogram divides it into two Triangles of equal area.
Since, AO & OC are diagonals of a parallelogram AMOP & OQCL
ar(∆APO) = ar(∆AMO) ………..(1)
ar(∆OLC) = ar(∆OQC) ………..(2)
ar(∆ADC) = ar(∆ABC)
ar(∆APO) + ar(||gmDLOP) +ar(∆OLC) =
ar(∆AMO) + ar(||gm BMOP) +ar(∆OQC) …(3)
Subtract eq 1 & 2 from 3
ar(||gmDLOP) = ar(||gm BMOQ)
HOPE THIS WILL HELP YOU...
Attachments:
Answered by
27
Since,a diagonal of a parallelogram divides it into two Triangles of equal area.
Since, AO & OC are diagonals of a parallelogram AMOP & OQCL
ar(∆APO) = ar(∆AMO) ………..(1)
ar(∆OLC) = ar(∆OQC) ………..(2)
ar(∆ADC) = ar(∆ABC)
ar(∆APO) + ar(||gmDLOP) +ar(∆OLC) =
ar(∆AMO) + ar(||gm BMOP) +ar(∆OQC) …(3)
Subtract eq 1 & 2 from 3
ar(||gmDLOP) = ar(||gm BMOQ)
Similar questions