ABCD is a parallelogram.P is a point on CD .if area of ∆APB= 8cm sq. find the area of parallelogram ABCD.
Answers
Answered by
1
- area of triangle APB = area of triangle ADP
- [two triangles having same base and lie between same parallels]
- = 8 cm sq.
- Similarly, ar(triangle APB) = at(triangle BPC)
- Therefore,ar(ABCD) = ar(ABP) + ar(ADP) +
ar(BPC)
- = 8 + 8 + 8
- = 24 cm sq.
Answered by
0
Answer:
(Diagram given in attachment)
AC = 6 cm
⇒ AO + CO = 6
⇒ AO + AO = 6 [∵ AO = CO]
⇒ 2AO = 6
⇒ AO = 6 ÷ 2
⇒ AO = 3 cm
⇒ AO = CO = 3 cm
BD = 8 cm
⇒ BO + OD = 8
⇒ BO + BO = 8 [∵ BO = OD]
⇒ 2BO = 8
⇒ BO = 8 ÷ 2
⇒ BO = 4 cm
⇒ BO = OD = 4 cm
In ΔAOB,
By Pythagoras Theorem,
(AB)² = (AO)² + (BO)²
⇒ (AB)² = 3² + 4²
⇒ (AB)² = 9 + 16
⇒ (AB)² = 25
⇒ (AB) = √25
⇒ AB = ±5
Side cannot be negative
∴ Side of Rhombus = 5 cm
Now let's find the perimeter
Perimeter = 4(Side)
Perimeter = 4(5)
★ Perimeter = 20 cm ★
Similar questions