Math, asked by tyagi31, 5 months ago

ABCD is a parallelogram, P is the point on the side BC and DP when produced meed AB at L. Prove that

(i) DP/PL = DC/BL

(ii) DL/DP = AL/DC​

Answers

Answered by MaIeficent
10

Step-by-step explanation:

Diagram:- Refer the attachment

To Prove:-  \sf (i) \: \dfrac{DP}{PL}  =  \dfrac{DC}{BL}

\sf  \:  \:  \:  \: \: \: \:  \:  \:  \: \: \:  \:  \:  \:  \: \: \:   \:  \:  \:  \: \: \: \sf \: (ii) \: \dfrac{DL}{DP}  =  \dfrac{AL}{DC}

Proof:-

\sf \: (i) \: In \:  \triangle \: ALD

\sf \:   \: BP \parallel \: AD

\sf [Since \: BC \: and \: AD \: are \: opposite \: sides \: of \: the \: parallelogram]

\sf \:   \:  \dfrac{BL}{AB} =  \dfrac{PL}{PD}

\sf Taking \: reciprocals \: on \: both \: sides

 \dashrightarrow \sf\dfrac{PD}{PL}  =  \dfrac{AB}{BL}

\sf Since ,\:AB = CD

 \sf \therefore \:  \dfrac{DP}{PL}  =  \dfrac{DC}{BL}

\sf \underline{ Hence \: Proved}

\sf \: (ii) \: In \:  \triangle \: ALD \: from \: (i)

 \sf \dashrightarrow \:  \dfrac{DP}{PL}  =  \dfrac{DC}{BL}

 \sf \dashrightarrow \:  \dfrac{PL}{DP}  =  \dfrac{BL}{DC}\:  \:  \:  \: \: \: \:  \:  \: [Taking \: reciprocals \: on \: both \: sides]

\sf \:   \:  \dfrac{PL}{DP} =  \dfrac{BL}{AB}    \:  \:  \:  \: \: \: \:  \:  \: [Since, \: DC = AB]

\sf Adding \: 1 \: on \: both \: sides

\sf \dashrightarrow \dfrac{PL}{DP} + 1 =  \dfrac{BL}{AB} + 1

\sf \dashrightarrow \dfrac{PL + PD}{AB} =  \dfrac{BL + AB}{AB}

\sf \therefore \dfrac{DL}{DP} = \dfrac{AL}{AB}

\sf\underline{ Hence \: Proved}

Attachments:
Similar questions