ABCD is a parallelogram. Prove that ar(BCP) = ar(DPQ) if BC=CQ
Answers
Answered by
11
Given : ABCD is a parallelogram.
BC=CQ.
To prove :
ar(ΔBCP)=ar(ΔDPQ)
Construction :
Join AC
Proof :
ar(ΔBPC) = ar (ΔAPC) [Triangles on the same base and between same parallels ]
Similarly ,
ar(ΔADC) = ar(ΔADQ) [Triangles on the same base and between same parallels ]
ar(ΔADC) = ar(ΔADP) +ar(ΔAPC)
ar(ΔADQ) = ar(ΔADP) + ar(ΔDPQ)
ar(ΔADC) = ar(ΔADQ) and ,
ar(ΔADP) is common.
∴ ar(ΔAPC) = ar(ΔDPQ)
But ,
ar(ΔAPC) = ar(ΔBPC)
∴ ar(ΔBPC) = ar(ΔDPQ)
Hence ,proved.
Please mark brainliest ....
BC=CQ.
To prove :
ar(ΔBCP)=ar(ΔDPQ)
Construction :
Join AC
Proof :
ar(ΔBPC) = ar (ΔAPC) [Triangles on the same base and between same parallels ]
Similarly ,
ar(ΔADC) = ar(ΔADQ) [Triangles on the same base and between same parallels ]
ar(ΔADC) = ar(ΔADP) +ar(ΔAPC)
ar(ΔADQ) = ar(ΔADP) + ar(ΔDPQ)
ar(ΔADC) = ar(ΔADQ) and ,
ar(ΔADP) is common.
∴ ar(ΔAPC) = ar(ΔDPQ)
But ,
ar(ΔAPC) = ar(ΔBPC)
∴ ar(ΔBPC) = ar(ΔDPQ)
Hence ,proved.
Please mark brainliest ....
aryangupta55p4l4w1:
You did not use BC=CQ in proving.
Similar questions