ABCD is a parallelogram. W, X, Y and Z are points on sides AB, BC, CD, and DA respectively, such that A W = D Y . If ar ( A B C D ) = 400 c m 2 , what is the area of quadrilateral WXYZ?
Answers
Answered by
0
Answer:
The area of WXYZ is 200 cm².
Step-by-step explanation:
[Refer to the attached figure.]
Construction
Join ZX and WY.
proof
Now consider the parallelogram AWOZ.
ZW is the diagonal of AWOZ.
We know that the diagonal of a parallelogram divides it into equal parts so,
ar(AZW) = ar(OZW) ---------(1)
Similarly, you can prove that
- ar(OXW) = ar(BXW) ----------(2)
- ar(OYZ) = ar(DYZ) ------------(3)
- ar(OYX) = ar(CYX) ------------(4)
NOW ar(ABCD) = ar(AZW) +ar(BXW) +ar(DYZ) +ar(CYX) +ar(OZW)+ar(OXW)+ar(OYZ)+ar(OYX).
=> ar(ABCD) = 2[ar(OZW)+ar(OXW)+ar(OYZ)+ar(OYX)]
=> ar(ABCD) = 2[ar(WXYZ)]
=> ar(WXYZ) = [ar(ABCD)]/2
=> ar(WXYZ) = 400/2=200 cm²
Attachments:
Similar questions