Math, asked by garima200026, 5 months ago

ABCD is a parallelogram with perimeter 40b. find the values of x and y​

Attachments:

Answers

Answered by aryan073
4

Given :

• ABCD is a parallelogram with perimeter =40cm

________________________________________

To Find :

• The value of x and y=?

________________________________________

Formula :

• Perimeter of parallelogram =2(L+b)

________________________________________

Solution:

\\ \pink{\bf{Sides}} \begin{cases} \: \sf{Length(DC)=2y+2} \\ \\ \sf{Breadth(DA)=2x} \\ \\\sf{AB=3x} \end{cases}

 \\  \\  \implies \sf \: perimeter \: of \: parallelogram = 2(l + b) \\  \\ \\   \implies \sf \: perimeter \: of \: parallelogram = 40cm \\  \\   \\ \implies \sf \:  40 = 2(l + b) \\   \\ \\  \implies \sf \:  \frac{40}{2}  = (2y + 2) + 2x \\  \\  \\  \implies \sf \: 20 = 2y + 2x + 2 \\  \\  \\  \implies \sf \: 18 = 2x + 2y \\  \\  \\  \implies \sf \: 9 = x + y \\  \\   \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \boxed{ \sf{9 - y = x}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .....(1)

Also, Opposite sides of parallelogram are equal .

 \therefore \:  \:  \:  \:  \:  \implies \sf \: 3x = 2y + 2 \\  \\ \\   \implies  \sf \: 3x - 2y - 2 = 0 \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \boxed{ \sf{3x - 2y = 2}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ........(2)

On putting equations (1) in equation (2) we get,

 \\  \implies \sf \: 3( 9 - y) - 2y = 2 \\  \\  \implies \sf \: 27 - 3y - 2y = 2 \\  \\  \implies \sf \: 27 - 5y -2 = 0 \\  \\  \implies \sf \: 25 - 5y = 0 \\  \\  \implies \boxed{ \sf{y = 5}}

Putting the value of y in equation (1) we get,

 \implies \sf \: x = 9 - 5 \\  \\  \implies \boxed{ \sf{x = 4}}

Hence, the value of X and y are

 \green \bigstar\boxed{ \bf{x = 4}} \:    \:  \:  \tt{and }\:  \:  \boxed{ \bf{y = 5}}

Similar questions