ABCD is a parallelogram with side AB = 12 cm.
Its diagonals AC and BD are of lengths 20 cm and
16 cm respectively. Find the area of || gm ABCD.
Answers
Answer:
Let O be the intersecting point of AC and BD
We know,
diagonals of a parallelogram bisect each other
OA =OC = 1/2×AC = 10cm
OB = OD= 1/2×BD = 8cm
in ∆AOB
OA=10cm
OB=8cm
AB=12cm
By using Heron's formula
ar(∆AOB)=√s(s-a)(s-b)(s-c)
s=(a+b+c)/2=(12+8+10)/
2=30/2=15cm
ar(∆AOB)=√15×3×7×5
= 15√7 cm²
we know that the diagonals of a parallelogram divides it into four equal triangles
=>ar(∆AOB)=ar(∆BOC)=ar(∆COD)=ar(∆AOD)= 15√7 cm²
ar(ABCD) = 4*15√7 = 60√7 cm² (Ans.)
on:
O को AC और BD का प्रतिच्छेदन बिंदु माना जाता है
हम लोग जान,
एक समांतर चतुर्भुज के विकर्ण एक दूसरे को काटते हैं
OA = OC = 1/2 × AC = 10 सेमी
ओबी = ओडी = 1/2 × बीडी = 8 सेमी
inAOB में
OA = 10 सेमी
ओबी = 8 सेमी
एबी = 12 सेमी
बगुला के सूत्र का उपयोग करके
ar (saAOB) = OBs (sa) (sb) (sc)
s = (a + b + c) / 2 = (12 + 8 + 10) /
2 = 30/2 = 15 सेमी
ar ((AOB) = ∆15 × 3 × 7 × 5
= 15 =7 सेमी√
हम जानते हैं कि एक समांतर चतुर्भुज के विकर्ण इसे चार समान त्रिभुजों में विभाजित करते हैं
=> ar (>AOB) = ar (OCBOC) = ar ((COD) = ar (√AOD) = 15√7 cm∆
ar (ABCD) = 4 * 15√7 = 60²7 cm Ans (Ans।)