ABCD is a parallelogram x and y are the midpoints of the sides BC and CD respectively prove that area of a x y=
3 /8 area of parallelogram ABCd
Answers
Answered by
1
In∠BCDIn∠BCD
X and Y are midpoint of sides BC and CD
XY||BD and XY=1/2BD
ar(∠CXY)=14⋅ar(∠ABC)ar(∠CXY)=14⋅ar(∠ABC)
ar(∠CYX)=18⋅ar(parallelogramABCD)−(1)ar(∠CYX)=18⋅ar(parallelogramABCD)-(1)
ParallelogramABCD and ∠ABX∠ABX
AD||BX
BX=12BCBX=12BC
∠ABX=14(∣∣gramABCD)−(2)∠ABX=14(∣∣gramABCD)-(2)
ar(∠AYD)=14ar(∣∣gramABCD)−(3)ar(∠AYD)=14ar(∣∣gramABCD)-(3)
ar(∣∣gramABCD)=ar(∠ABX)+ar(∠AYB)+ar(CYX)+ar(∠AXY)ar(∣∣gramABCD)=ar(∠ABX)+ar(∠AYB)+ar(CYX)+ar(∠AXY)
ar(AXY)=ar(∣∣gramABCD)−[ar(∠ABX)+a
Similar questions