Math, asked by sohamjaware, 1 month ago

.. ABCD is a quadrilateral. AO and BO are the angle bisectors of angle A and B which meet at O. If angle C = 70°, angle D= 50°, find angle AOB.​

Attachments:

Answers

Answered by kamalhajare543
42

Answer.

∠C = 70° , ∠D = 50°

\fbox{\underline\orange{To~Find~:}}

We have to find ∠AOB .

\fbox{\underline\green{Solution~:}}

 \sf \: {Let  \: ∠A \:  and  \: ∠B =} x

We know that sum of all sides of Quadrilateral is 360° .

x + x + 70° + 50° = 360°

2x + 120° = 360°

2x = 360° - 120°

2x = 240°

 \sf \: x = \frac{240°}{2}

x = 120°

In ∠AOB

∠A = 60° , ∠B = 60°

 \bold{Let , ∠O =}{ x}

We know that sum of all sides in a Triangle is 180° .

 \sf ∠A + ∠B + ∠O = 180°\\ \\ 60° + 60° + \sf x = 180°\\ \\ 120° + \sf x = 180°\\ \\ \sf x = 180° - 120°\\ \\ \sf \implies\: \bold{ x = 60°}

⠀⠀⠀⠀ ⠀⠀

\boxed{\underline\red{ \sf \: x = 60°~Ans.}}

Hence This is Answer.

Answered by telex
1320

Question :-

ABCD is a quadrilateral. AO and BO are the angle bisectors of angle A and B which meet at O. If angle C = 70°, angle D= 50°, find angle AOB.

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Solution :-

Given Information :-

  • AOAngle bisector of ∠A
  • BOAngle bisector of ∠B
  • AO & BO meet at point O
  • Measure of ∠C70°
  • Measure of ∠D50°

To Find :-

  • Measure of ∠AOB

Concept :-

  • Quadrilaterals

Formula Used :-

  1.  \boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: quadrilateral} =  \blue{360 \degree}}}}
  2.  \boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: triangle} =  \blue{180 \degree}}}}

Explanation :-

  • First of all, we'll assume Measure of ∠A & ∠B as 'x'. Then we'll substitute all the values in the first formula provided above. After some minute calculations, we'll get the value of 'x'. The to find the measure of ∠AOB, well substitute the values and use the second formula mentioned above. After some minute calculations, we'll get the value of our ∠AOB. Now let's proceed towards our calculation.

Calculation :-

Assuming the measure of ∠A & ∠B as 'x'

Using the first formula, We get,

 \boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: quadrilateral} =  \blue{360 \degree}}}}

Substituting the values given in the formula mentioned above, We get,

  \rm{:\implies \red{∠A + ∠B + ∠C + ∠D} =  \blue{360 \degree}}

Substituting the values, We get,

 \rm:\implies { \red{x + x + 70° + 50°=  \blue{360 \degree}}}

Adding up all the terms, We get,

 \rm:\implies { \red{2x + 120°=  \blue{360 \degree}}}

Transposing 120° to Right Hand Side of the equation, We get,

 \rm:\implies{ \red{ 2x =  \blue{360 \degree - 120\degree}}}

Subtracting the terms in Right Hand Side of the equation, We get,

 \rm:\implies{ \red{ 2x =  \blue{240 \degree}}}

Now, transposing '2' to the denominator in Right Hand Side of the equation, We get,

 \rm:\implies{ \red{x }=  \blue{  \dfrac{240}{2} \degree}}

Cancelling & Calculating further, We get,

 \bf:\implies\boxed{{ \boxed{\red{\rm x }=  \blue{120 \degree}}}}

Now, In ∠AOB

We now know, ∠A + ∠B = 120°

:⇒ x + x = 120°

:⇒ 2x = 120°

∠A = 60° , ∠B = 60°

Now, assuming ∠O as 'x'

Using the second formula, mentioned above, We get,

 \boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: triangle} =  \blue{180 \degree}}}}

Substituting the values given in the formula mentioned above, We get,

 \rm:\implies \red{∠A + ∠B + ∠O }= \blue{180°}

Substituting the values, We get,

 \rm:\implies{\red {60° + 60° + x }=\blue{ 180°}}

Adding up terms of Left Hand Side of the equation, We get,

\rm:\implies{\red{120° + x }= \blue{180°}}

Transposing 120° to Right Hand Side of the equation, We get,

\rm:\implies{ \red{x} =\blue{ 180° - 120°}}

Subtracting, We get,

 \rm:\implies{ \red x = \blue{60°}}

\therefore\boxed{\boxed{\red{ \bf \: ∠AOB }=\blue{ 60°}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Final Answer :-

  • Measure of ∠AOB is 60°

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Note :-

Please scroll from right to left to see the whole solution.

Similar questions