Math, asked by furiouslegend9632, 5 months ago

ABCD is a quadrilateral in which AB ‖ CD and AD = BC . Show that angle a = angle b​

Answers

Answered by Agamsain
5

Given :-

  • ABCD is a Quadrilateral
  • AB ‖ CD
  • AD = BC

Construction :-

  • Extend AB to E and draw a line CE parallel to AD

To Prove :-

  • ∠A = ∠B

Explanation :-

As AD ‖ EC and AE ‖ AC,

\rm \boxed { \implies \bold { AECD \; is \; a \; Parallelogram }}

In Parallelogram AECD,

\rm \implies AD = CE \qquad \bold{[Opposite \; side \; of \; Parallelogram]}

\rm \implies AD = BC \qquad \bold{[Given]}

\boxed { \rm \implies BC = CE } \qquad \bold{[From \; Above]}

In Triangle BCE,

\rm \implies BC = CE \qquad \bold{[Proved]}

\boxed { \rm \implies \angle CBE = \angle CEB }

Now,

\rm \implies \angle A \; + \; \angle CBE = 180^\circ  \qquad \bold{[Angle \; on \; the \; same \; transversal \; and \; \angle CBE = \angle CEB]}\rm \implies \angle B \; + \; \angle CBE = 180^\circ \qquad \bold{[Linear \; Pair]}

\underline { \boxed { \bf \implies \angle A = \angle B }}

Hence, In quadrilateral ABCD ; ∠A = ∠B

@Agamsain

Attachments:
Similar questions