ABCD is a quadrilateral in which P Q R and S are midpoints of the sides ab BC CD and DA. AC is a diagonal. show that : 1),SR||AC and SR=1/2AC. 2)PQ=SR. 3)PQRS is a parallelogram.
Answers
Given:In quadrilateral ABCD
P,Q,R,S are mid point of sides AB,BC,CD and DA respectively
T.P: 1
2
3
In triangle ADC,
SR is a line segment joining the mid point of DA and DC respectively
:. SR||AC ( mid point therom)
In triangle BAC
PQ is a line segment joining the mid point of BA and BC respectively.
PQ||AC (mid point therom)
pQ = half of AC
From 1 &2
SR=PQ
SR ||PQ
:. PQRS is a ||gram.
In a quadrilateral ABCD (1) SR || AC and SR = AC , (2) PQ = SR and (3) PQRS is a parallelogram is proved below.
Concept used:
Midpoint Theorem:
"We know that the line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it."
Given:
In a quadrilateral ABCD P, Q, R & S are the midpoints of the sides AB, BC, CD, and DA. AC is diagonal.
To show:
(1) SR || AC and SR = 1/2 AC
2) PQ = SR
(3) PQRS is a parallelogram.
Proof:
Step1: Applying midpoint Theorem in △ADC :
R is the midpoint of DC and S is the midpoint of AD.
By midpoint Theorem:
SR ∥ AC ...........(i)
& SR = ½ AC ........(ii)
Part (1) SR || AC and SR = AC is proved.
Step2: Applying midpoint Theorem in △ABC :
P is the midpoint of AB and Q is the midpoint of BC.
Thus by mid point theorem,
PQ ∥ AC .......... (iii)
& PQ = AC ........(iv)
Step 3: Using eq (ii) & (iv) we get:
SR = AC and PQ = AC
SR = PQ = AC ...... (v)
Part (2) PQ = SR is proved.
Step 4: Using eq (i) & (iii) we get:
SR ∥ AC and PQ ∥ AC
PQ || SR ....….. (vi)
From eq.(v) and (vi) PQ = SR and PQ || SR
Since a pair of opposite sides of a quadrilateral PQRS is equal and parallel. So, PQRS is a parallelogram.
Part (3) PQRS is a parallelogram is proved.
Hence, SR || AC and SR = AC, PQ = SR, and PQRS is a parallelogram is proved.
Learn more on Brainly:
ABCD एक चतुर्भुज है जिसमें P, Q R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। (देखिए आकृति 8.29)I AC उसका एक विकर्ण है। दर्शाइए कि
(i) और है।
(ii) है।
(iii) PQRS एक समांतर चतुर्भुज है।
brainly.in/question/10545297
ABCD एक समलंब है, जिसमें और है (देखिए आकृति 8.23)। दर्शाइए कि
(i)
(ii)
(iii)
(iv) विकर्ण AC=विकर्ण BD है।
[संकेत: AB को बढ़ाइए और C से होकर DA के समांतर एक रेखा खींचिए जो बढ़ी हुई भुजा AB को E पर प्रतिच्छेद करे।]
brainly.in/question/10544239
#SPJ3