Math, asked by kau30, 1 month ago

ABCD is a quadrilateral in which the bisectors of ∠B and ∠C meet at O. If ∠A = 100° and ∠D = 90°, find the measure of ∠BOC.​

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       \text{It is given that: }

       \angle{A} = 100^{o}

       \angle{D} = 90^{o}

       \text{Let }\angle{B}\text{ and }\angle{C}\text{ be }2x \text{ and }2y \text{ respectively}

       \text{In }ABCD

       \text{We know that, sum of angles of a quadrilateral} = 360^{o}

\implies \angle{A} + \angle{B} + \angle{C} + \angle{D} = 360^{o}

       \text{Substituting the values of the angles}

\implies 100 + 2x + 2y + 90 = 360^{o}

       \text{Simplifying...}

\implies 190 + 2x + 2y = 360^{o}

       \text{Transposing 190 to R.H.S}

\implies 2x + 2y = 360 - 190

       \text{Simplifying...}

\implies 2x + 2y = 170^{o}

       \text{Simplifying...}

\implies 2(x+y) = 170

       \text{Transposing 2 to R.H.S}

\implies x + y = \dfrac{170}{2}

       \text{Simplifying...}

\implies x + y = 85^{o} \text{ ------ (i)}

       \text{In }\triangle{BOC}

       \angle{OBC} = \dfrac12\angle{B} = x \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(BO \text{ is the angle bisector of }\angle{B})

       \angle{OCB} = \dfrac12\angle{C} = y \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(CO \text{ is the angle bisector of }\angle{C})

       \text{We know that, sum of angles of a triangle} = 180^{o}

\implies \angle{OBC}+\angle{BOC} + \angle {OCB} = 180^{o}

       \text{Substituting the values of the angles}

\implies x +\angle{BOC}+ y= 180^{o}

       \text{From (i)}

\implies  \angle{BOC}+85 = 180^{o}

       \text{Transposing 85 to R.H.S}

\implies  \angle{BOC}= 180 - 85

       \text{Simplifying...}

\implies  \boxed{\angle{BOC}= 95^{o} }

       

Attachments:
Similar questions