Math, asked by hashmitha7, 1 year ago

ABCD is a Quadrilateral. Is AB + BC + CD + DA > 2 (AC + BD ) ?

Answers

Answered by abcxyz12
3
hiiiii mate here your answer ✔️ ✔️
______________________________

ABCD is a quadrilateral and AC, and BD are the diagonals. Sum of the two sides of a triangle is greater than the third side. So, considering the triangle ABC, BCD, CAD and BAD, we get AB + BC > AC CD + AD > AC AB + AD > BD BC + CD > BD Adding all the above equations, 2(AB + BC + CA + AD) > 2(AC + BD) ⇒ 2(AB + BC + CA + AD) > 2(AC + BD) ⇒ (AB + BC + CA + AD) > (AC + BD) ⇒ (AC + BD) < (AB + BC + CA + AD)
_____________________________

❤️ I hope you mark as brainlist answer⭐❤️✨✨✨✨
Answered by Anonymous
9

Since, the sum of length of any two sides in a triangle should be greater than the Length of third side.


Therefore, In ΔAOB,
 \: \: \: \: \bold{AB &lt; OA + OB} ..........(i)

In ΔBOC,
 \: \: \: \: \bold{BC &lt; OB + OC} ..........(ii)

In ΔCOD,
 \: \: \: \: \bold{CD &lt; OC + OD} ..........(iii)

In ΔAOD,
 \: \: \: \: \bold{DA &lt; OD + OA} ..........(iv)


\text{\underline{Adding equations (i), (ii), (iii) and (iv) we get:}}


\textbf{AB + BC + CD + DA &lt; OA + OB + OB +OC + OC + OD + OD + OA}


⇒\textbf{AB + BC + CD + DA &lt; 2OA + 2OB + 2OC + 2OD}


⇒\textbf{AB + BC + CD + DA &lt; 2[(AO + OC) + (DO +OB)]}


\bold{\red{\fbox{AB + BC + CD + DA &lt; 2(AC + BD)}}}


Hence, it is proved ✔✅


[ Based on NCERT solutions ]

Attachments:
Similar questions