ABCD is a quadrilateral . Is AB + BC + CD + DA < 2(AC + BD) ?
[ Figure in the attachment ]
Note :- Wrong or invalid answer will be reported .
Attachments:
Answers
Answered by
49
✴Question:-
ABCD is a quadrilateral.Is AB + BC + CD + DA < 2(AC + BD) ?
_______________________________
✴Solution:-
→Given:-
- ABCD is a quadrilateral.
→To Find:-
- Is AB + BC + CD + DA < 2(AC + BD) ?
→Concept:-
- Simple Geometry Problem.
→Proof:-
⇒In ∆AOB,
Sum of two sides > Third side
= AO+BO > AB ...(1)
➢ Similarly,
⇒In triangle ∆BOC,
=BO+CO > BC ...(2)
⇒In triangle ∆COD,
=CO+DO > CD ...(3)
⇒In triangle ∆AOD
=DO+AO > DA ...(4)
➢Adding (1),(2),(3),(4)
=AO+ BO + BO + CO + CO + DO + DO + AO > AB+BC+CD+DA
=2AO + 2BO + 2CO + 2DO > AB + BC + CD + DA
=2(AO + CO) + 2(BO + DO) > AB + BC + CD + DA
=2AC + 2BD > AB + BC + CD + DA
=2(AC + BD) > AB+ BC + CD + DA
=AB + BC + CD + DA < 2(AC + BD)
Hence Proved,
________________________________
Answered by
0
Answer:
Step-by-step explanation:
Attachments:
Similar questions