ABCD is a quadrilateral.
Is AB+BC+CD+DS>AC+BD?
Help fast please
Answers
ᴀɴꜱᴡᴇʀ :
ᴀʙᴄᴅ ɪꜱ ᴀ Qᴜᴀᴅʀɪʟᴀᴛᴇʀᴀʟ ᴀɴᴅ ᴀᴄ, ᴀɴᴅ ʙᴅ ᴀʀᴇ ᴛʜᴇ ᴅɪᴀɢᴏɴᴀʟꜱ.
ꜱᴜᴍ ᴏꜰ ᴛʜᴇ ᴛᴡᴏ ꜱɪᴅᴇꜱ ᴏꜰ ᴀ ᴛʀɪᴀɴɢʟᴇ ɪꜱ ɢʀᴇᴀᴛᴇʀ ᴛʜᴀɴ ᴛʜᴇ ᴛʜɪʀᴅ ꜱɪᴅᴇ.
ꜱᴏ, ᴄᴏɴꜱɪᴅᴇʀɪɴɢ ᴛʜᴇ ᴛʀɪᴀɴɢʟᴇ ᴀʙᴄ, ʙᴄᴅ, ᴄᴀᴅ ᴀɴᴅ ʙᴀᴅ, ᴡᴇ ɢᴇᴛ
ᴀʙ + ʙᴄ > ᴀᴄ
ᴄᴅ + ᴀᴅ > ᴀᴄ
ᴀʙ + ᴀᴅ > ʙᴅ
ʙᴄ + ᴄᴅ > ʙᴅ
ᴀᴅᴅɪɴɢ ᴀʟʟ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴇQᴜᴀᴛɪᴏɴꜱ,
2(ᴀʙ + ʙᴄ + ᴄᴀ + ᴀᴅ) > 2(ᴀᴄ + ʙᴅ)
⇒ 2(ᴀʙ + ʙᴄ + ᴄᴀ + ᴀᴅ) > 2(ᴀᴄ + ʙᴅ)
⇒ (ᴀʙ + ʙᴄ + ᴄᴀ + ᴀᴅ) > (ᴀᴄ + ʙᴅ)
ʜᴇɴᴄᴇ, ᴘʀᴏᴠᴇᴅ✔️✔️
Answer:
ABCD is a quadrilateral and AC, and BD are the diagonals.
Sum of the two sides of a triangle is greater than the third side.
So, considering the triangle ABC, BCD, CAD and BAD, we get
AB + BC > AC
CD + AD > AC
AB + AD > BD
BC + CD > BD
Adding all the above equations,
2(AB + BC + CA + AD) > 2(AC + BD)
⇒ 2(AB + BC + CA + AD) > 2(AC + BD)
⇒ (AB + BC + CA + AD) > (AC + BD)
HENCE, PROVED
Please follow
Me please
Step-by-step explanation:
Mark me as brainlieast and follow