Math, asked by ranjanmanoj690, 7 months ago

ABCD is a quadrilateral prove that (AB+BC+CD+DA) >(AC+BD) ​

Answers

Answered by asrividya2005
0

Answer:

Step-by-step explanation:ABCD is a quadrilateral and AC, and BD are the diagonals.

Sum of the two sides of a triangle is greater than the third side.

So, considering the triangle ABC, BCD, CAD and BAD, we get

AB + BC > AC

CD + AD > AC

AB + AD > BD

BC + CD > BD

Adding all the above equations,

2(AB + BC + CA + AD) > 2(AC + BD)

⇒ 2(AB + BC + CA + AD) > 2(AC + BD)

⇒ (AB + BC + CA + AD) > (AC + BD)

HENCE, PROVED

Answered by archana22121976
0

Answer:

it means

AB + BC. BECAME AC

AND THEN

BC+ CD BECAME BD

Similar questions