Math, asked by minimoochifan1, 3 months ago

ABCD is a quadrilateral. Prove that (AB + BC + CD + DA) > (AC + BD)

Answers

Answered by Anonymous
23

ABCD is a quadrilateral and AC, and BD are the diagonals.

Sum of the two sides of a triangle is greater than the third side.

So, considering the triangle ABC, BCD, CAD and BAD, we get

AB + BC > AC

CD + AD > AC

AB + AD > BD

BC + CD > BD

Adding all the above equations,

2(AB + BC + CA + AD) > 2(AC + BD)

⇒ 2(AB + BC + CA + AD) > 2(AC + BD)

⇒ (AB + BC + CA + AD) > (AC + BD)

HENCE, PROVED

Answered by shrutikrsingh
9

Answer:

Refer to the attachment above. ⬆️

hope it helps!!

Attachments:
Similar questions