ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA
respectively. Show that the quadrilateral PQRS is a rhombus.
Answers
Answer:
Step-by-step explanation:
Refer the following photo(figure - attachment):
Here, we are joining A and C.
In ΔABC
P is the mid point of AB
Q is the mid point of BC
PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and also is half of it]
PQ= 1/2 AC
In ΔADC
R is mid point of CD
S is mid point of AD
RS∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to third side and also is half of it]
RS= 1/2 AC
So, PQ∣∣RS and PQ=RS [one pair of opposite side is parallel and equal]
In ΔAPS & ΔBPQ
AP=BP [P is the mid point of AB)
∠PAS=∠PBQ(All the angles of rectangle are 90° )
AS=BQ
∴ΔAPS≅ΔBPQ(SAS congruency)
∴PS=PQ
BS=PQ & PQ=RS (opposite sides of parallelogram is equal)
∴ PQ=RS=PS=RQ[All sides are equal]
∴ PQRS is a parallelogram with all sides equal
∴ So PQRS is a rhombus.
Hope it helps!
please mark me as brainliest!
Have a nice day!
God bless you!
Have a great future ahead!
May you get success in all your dreams and goals!
All the best!
Bye!