ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
Answers
Answered by
16
""" ❤️ Answer ❤️ """
Here, we are joining A and C.
In ΔABC
P is the mid point of AB
Q is the mid point of BC
PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and also is half of it]
PQ
=
2
1
AC
In ΔADC
R is mid point of CD
S is mid point of AD
RS∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to third side and also is half of it]
RS
=
2
1
AC
So, PQ∣∣RS and PQ=RS [one pair of opposite side is parallel and equal]
In ΔAPS & ΔBPQ
AP=BP [P is the mid point of AB)
∠ PAS
=
∠
PBQ(All the angles of rectangle are 90
o
)
AS=BQ
≅
Δ
∴ Δ
∴PS=PQ
BS=PQ & PQ=RS (opposite sides of parallelogram is equal)
∴ PQ = RS = PS = RQ[All sides are equal]
∴ PQRS is a parallelogram with all sides equal
∴ So PQRS is a rhombus.
Similar questions