Math, asked by mydreamnasa, 8 months ago

ABCD is a rectangle and the diagonals intersect at point O. If ∠ ABO = 38o

. Find

the angle ∠ COD​

Answers

Answered by viajaypkawle67
0

Step-by-step explanation:

In △ABC,

⇒ ∠CAB+∠ABC+∠ACB=180

o

.

⇒ 30

o

+90

o

+∠ACB=180

o

.

⇒ 120

o

+∠ACB=180

o

.

∴ ∠ACB=60

o

We know that, diagonals of rectangle are equal and bisect each other equally.

∴ AO=OC=BO=OD

In △ABO,

⇒ AO=BO

⇒ ∠OAB=∠ABO [ Angle opposite to equal side are also equal ]

⇒ ∠OAB=∠ABO=30

o

⇒ ∠OAB+∠ABO+∠BOA=180

o

⇒ 30

o

+30

o

+∠BOA=180

o

.

⇒ ∠BOA=120

o

.

⇒ ∠BOA=∠COD [ Vertically opposite angle ]

∴ ∠COD=120

o

⇒ ∠COD+∠BOC=180

o

[ Linear pair ]

⇒ 120

o

+∠BOC=180

o

∴ ∠BOC=60

o

.

⇒ ∠ACB=60

o

,∠ABO=30

o

,∠COD=120

o

and ∠BOC=60

o

.

Answered by pranayasahu
0

Step-by-step explanation:

In △ABC,

⇒ ∠CAB+∠ABC+∠ACB=180

o

.

⇒ 30

o

+90

o

+∠ACB=180

o

.

⇒ 120

o

+∠ACB=180

o

.

∴ ∠ACB=60

o

We know that, diagonals of rectangle are equal and bisect each other equally.

∴ AO=OC=BO=OD

In △ABO,

⇒ AO=BO

⇒ ∠OAB=∠ABO [ Angle opposite to equal side are also equal ]

⇒ ∠OAB=∠ABO=30

o

⇒ ∠OAB+∠ABO+∠BOA=180

o

⇒ 30

o

+30

o

+∠BOA=180

o

.

⇒ ∠BOA=120

o

.

⇒ ∠BOA=∠COD [ Vertically opposite angle ]

∴ ∠COD=120

o

Similar questions