Math, asked by hsisbgsisbksjsksks, 4 months ago

ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that:

(i)ABCD is a square

(ii) Diagonal BD bisects ∠B as well as ∠D.

Attachments:

Answers

Answered by Anonymous
7

\huge\star{\underline{\mathtt{\red{A}\pink{n}\green{s}\blue{w}\purple{e}\orange{r}}}}

\large\sf\underline\green{Given:-}

\sf\red{ABCD\:is\:a\:rectangle\:in\:which\:diagonal}

\sf\purple{AC\:bisects\:∠A\:as\:well\:as\:∠C}

\large\sf\underline\pink{Explanation:-}

(i) ∠DAC=∠DCA (AC bisects ∠A as well as ∠C)

⇒ AD = CD (Sides opposite to equal angles of a triangle are equal)

also, CD = AB (Opposite sides of a rectangle)

\sf\green{AB\:=\:BC\:=\:CD\:=\:AD}

\sf\blue{Thus,\:ABCD\:is\:a\:square}

(ii) In ΔBCD,BC = CD

⇒ ∠CDB = ∠CBD (Angles opposite to equal sides are equal)

also, ∠CDB = ∠ABD (Alternate interior angles)

⇒ ∠CBD = ∠ABD

\sf\pink{Thus,\:BD\:bisects\:∠B}

\large\sf\underline\red{Now,}

∠CBD = ∠ADB

⇒ ∠CDB = ∠ADB

\sf\orange{Thus,\:BD\:bisects\:∠D}

Answered by MissAlison
3

\huge\star{\underline{\mathtt{\red{A}\pink{n}\green{s}\blue{w}\purple{e}\orange{r}}}}

\large\sf\underline\green{Given:-}

\sf\red{ABCD\:is\:a\:rectangle\:in\:which\:diagonal}

\sf\purple{AC\:bisects\:∠A\:as\:well\:as\:∠C}

\large\sf\underline\pink{Explanation:-}

(i) ∠DAC=∠DCA (AC bisects ∠A as well as ∠C)

⇒ AD = CD (Sides opposite to equal angles of a triangle are equal)

also, CD = AB (Opposite sides of a rectangle)

\sf\green{AB\:=\:BC\:=\:CD\:=\:AD}

\sf\blue{Thus,\:ABCD\:is\:a\:square}

(ii) In ΔBCD,BC = CD

⇒ ∠CDB = ∠CBD (Angles opposite to equal sides are equal)

also, ∠CDB = ∠ABD (Alternate interior angles)

⇒ ∠CBD = ∠ABD

\sf\pink{Thus,\:BD\:bisects\:∠B}

\large\sf\underline\red{Now,}

∠CBD = ∠ADB

⇒ ∠CDB = ∠ADB

\sf\orange{Thus,\:BD\:bisects\:∠D}

Similar questions