Math, asked by Bhavyalohani, 5 months ago

ABCD is a rectangle whose three Vertices are B (12,0), C(12,5) and
D(0,5) then find the length of one of its diagonal.​

Answers

Answered by phantom9877
2

plzzz follow me

Step-by-step explanation:

Using Pythagoras theorem,

AC

2

=AB

2

+BC

2

=4

2

+3

2

AC

2

=16+9=25

Taking square root on both the sides, we get

AC =5 units.

Answered by Anonymous
5

Given:

  • ABCD is a rectangle whose three vertices are B(12,0), C(12,5) and D(0,5)

Find:

  • Length of any 1 Diagonal

Solution:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{0.7mm}\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,2.74){\framebox(0.25,0.25)}\put(4.74,0.01){\framebox(0.25,0.25)}\put(-0.5,-0.4){\bf D}\put(-0.5,3.2){\bf  A }\put(5.3,-0.4){\bf C}\put(5.3,3.2){\bf B}\qbezier(0,0)(0,0)(5,3)\put(5.6, - 0.4){\bf (12,5)} \put(5.6,3.2){\bf (12,0)} \put( - 0.1, - 0.4){\bf (0,5)} \end{picture}

Here, we know

 \displaystyle \boxed{ \sf Distance \: Formula,BD =  \sqrt{ (x_2 - x_1)^2 + (y_2-y_1)^2} \: }

where,

  • \red{\rm x_1 = 12}
  • \pink{\rm x_2 = 0}
  • \green{\rm y_1 = 0}
  • \red{\rm y_2 = 5}

So,

 \displaystyle \sf \dashrightarrow BD =  \sqrt{ (x_2 - x_1)^2 + (y_2-y_1)^2}   \\  \\

 \displaystyle \sf \dashrightarrow BD =  \sqrt{ (0 - 12)^2 + (5-0)^2}   \\  \\

 \displaystyle \sf \dashrightarrow BD =  \sqrt{ (- 12)^2 + (5)^2}  \\  \\

 \displaystyle \sf \dashrightarrow BD =  \sqrt{ 144+ 25}  \\  \\

 \displaystyle \sf \dashrightarrow BD =  \sqrt{ 169}  \\  \\

 \displaystyle \sf \dashrightarrow BD =  \sqrt{ {13}^{2} }  \\  \\

 \displaystyle \sf \dashrightarrow BD =  13units  \\  \\

 \displaystyle \sf \therefore BD =  13units \\

______________________________

Hence, Length of Diagonal BD = 13units

Similar questions