ABCD is a rhombus. AC and BD intersect at O, show that
AB2
+ BC2
+ CD2
+ DA2
= 4AO2
+ 4OD2
Answers
Answered by
1
Answer:
the answer to this question is
Step-by-step explanation:
deez nuts... ha gottem
Answered by
2
Answer and Step-by-step explanation:
The diagonals AC and BD of a rhombus intersect each other at O.
Diagonal of rhombus bisect each other perpendicularly
=> OA = OC = AC/2
& OB = OD = BD/2
Applying Pythagorean theorem
AB² = OA² + OB²
BC² = OB² + OC²
CD² = OC² + OD²
DA² = OD² + OA²
Adding all
=> AB² + BC² + CD² + DA² = OA² + OB² + OB² + OC² + OC² + OD² + OD² + OA²
using OA = OC & OB = OD
=>AB² + BC² + CD² + DA² = OA² + OB² + OB² + OA² + OA² + OB² + OB² + OA²
=> AB² + BC² + CD² + DA² = 4OA² + 4OB²
=> AB² + BC² + CD² + DA² = 4(OA² + OB²)
QED
Hence Proved
Similar questions