ABCD is a rhombus.Diagonal AC divides it into equilateral triangles.If angle ADC=60degree .Find angle ABC and angle DCB
Answers
ABCD is a rhombus, and AC diagonal makes two equilateral Triangles ABC and ADC, and,
Angle ADC = 60°
We have to find out:---
1) Angle ABC=?
2)Angle DCB= ?
In Triangle ABC and Triangle ADC :---
1) AC common,
2) AB =AD,
3) BC = DC,
Therefore Triangles are congruent to each other,
So, Angle ABC=ADC=60
Angle BAC =DAC..........(a)
Therefore , Angle BAD = angle BAC + angle DAC.
Now ,angle BCA= Angle DAC,(b),
There fore , Angle DCB = angle BCA + angle DAC,
We know sum of 3 angles of a Triangle is always 180°,
In triangle ADC:-----
Angle ADC + angle DAC + angle DAC = 180°,
Angle DAC+ angle DCA=180°-60° ( angle = 60°),
Angle DAC +angle DCA= 120°,
Angle 2DAC= 120°,
Angle DAC =60°,
So angle DCA= 60°,
Same In triangleABC
We get,
Angle ABC+ angle ACB + CAB= 180°,
AngleACB+ angle CAB= 180° -60° = 120°
Angle 2 ACB= 120°
Angle ACB= 120°/2= 60°,
Therefore ,
Angle CAB = 60°,
Now Angle DCB = angle ACB + angle DCA,
Angle DCB = 60° +60°= 120°,
Ans:-- angleABC is 60°, and angle DCB is 120°,
∠DCB =120°
∠ABC=60°
Step-by-step explanation:
In a rhombus ABCD,AC is a diagonal,which divides rhombus into two equilateral triangle ADC and ABC.
∠ADC=60° [Given]
We know that,
In equilateral ΔADC,
∠ADC+∠DCA+∠CAD=180°
Also,in an equilateral triangle all the three angles are equal.
∠ADC=∠DCA=∠CAD
⇒∠ADC=∠DCA=∠CAD=60°..............(1)
Also,opposite angle of a rhombus are always equal
⇒∠ADC=∠ABC
⇒∠ABC=60°
Now,In equilateral ΔABC,
∠ABC=∠ACB=∠BAC
⇒∠ABC=∠ACB=∠BAC=60°..............(2)
Now,∠DCB=∠DCA+∠BAC
=60°+60° [From equation (1) and (2)]
∠DCB =120°
∠ABC=60°