Math, asked by sanyukta60, 1 year ago

ABCD is a rhombus. Prove that AB square+Bc square+CD square+Ad square = AC square+ BD square​

Answers

Answered by svlekha
2

ABCD  is a rhombus. Prove that AB2+BC2+CD2+DA2=AC2+BD2 (u may copy this question)  

search for this question in net and go to the video by doubtnut

very well explained video.

thanks to doubtnut !!!

hope it helps! thank you

Answered by qwvampires
1

Given,

ABCD is a rhombus.

To find,

Prove AB² + BC² + CD² + AD² = AC² + BD²

Solution,

We know that ABCD is a rhombus.

Therefore, AB = BC= CD = DA and ∠A = ∠B = ∠C = ∠D = 90°

In Δ AOD,

It is a right angle triangle. By Pythagoras theorem,

AD² = A0² + OD²                                                        (i)

Similarly, in Δ COD

CD² = CO² + OD²                                                        (ii)    

Similarly, in Δ COB

BC² = CO² + OB²                                                        (iii)  

Similarly, in Δ AOB

AB² = AO² + OB²                                                        (iv)

Adding equation (i), (ii), (iii) and (iv)

AD² + CD² + BC² + AB² = 2 AO² + 2 CO² + 2 OD² + 2 OB²  

AD² + CD² + BC² + AB² = 2 (AO² + CO²) + 2 (OB² + OD²)      

But since AO = CO = AC/2, and OB = OD = BD/2

AD² + CD² + BC² + AB² = 2 [(AC/2)² + (AC/2)²] + 2 [(BD/2)² + (BD/2)²]

AD² + CD² + BC² + AB² = 2 [2AC²/4] + 2[2BD²/4]

AD² + CD² + BC² + AB² = AC² + BD²

AD² + CD² + BC² + AB² = AC² + BD²

Hence proved that AB² + BC² + CD² + AD² = AC² + BD²

Attachments:
Similar questions