Math, asked by bhaskarbhasi35, 3 months ago

ABCD is a rhombus,then prove that AB square+BC square+CD square+DA square=AC square+BD square​

Answers

Answered by suraj5070
277

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt ABCD\: is \:a\: rhombus,\:then\: prove\: that \\\tt {AB}^{2}+{BC}^{2}+{CD}^{2}+{DA}^{2}={AC}^{2}+{BD}^{2}

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf ABCD \:is\:a\:rhombus
  •  \bf BD \:and \:AC\:diagonals \:meet \:at \:a\:point\:O

 \sf \bf {\boxed {\mathbb {TO\:PROVE}}}

  •  \bf {AB}^{2}+{BC}^{2}+{CD}^{2}+{DA}^{2}={AC}^{2}+{BD}^{2}

 \sf \bf {\boxed {\mathbb {PROOF}}}

 {\pink{ \underline {\mathfrak { Diagonals \: of \: the \: rhombus \: bisect \: each \:other \: at \: right \: angles}}}}

  • {\longrightarrow{\boxed {\sf {\angle AOB=\angle BOC=\angle COD=\angle DOA ={90}^{\circ}}}}}

  •  \longrightarrow {\boxed {\sf {BO=\dfrac{BD}{2}}}}-{\sf \big(1\big)}

  •  \longrightarrow {\boxed {\sf {AO=\dfrac{AC}{2}}}}-{\sf \big(2\big)}

————————————————————————————

 {\pmb {In\:\triangle ABO}}

 \bf \implies \angle AOB={90}^{\circ}

 {\underbrace {\overbrace {\orange {\bf {\pmb {By\: Pythagoras \:theorem}}}}}}

 \bf \implies {AB}^{2}={BO}^{2}+{AO}^{2}

 \bf \implies {AB}^{2}={\bigg(\dfrac{BD}{2}\bigg)}^{2}+{\bigg(\dfrac{AC}{2}\bigg)}^{2} \longrightarrow \Big(According \:to\:eq \:1\:and \:2\Big)

 \bf \implies {AB}^{2}=\bigg(\dfrac{{BD}^{2}}{4}\bigg)+ \bigg(\dfrac{{AC}^{2}}{4}\bigg)

 \bf \implies {AB}^{2}=\dfrac{{BD}^{2}+{AC}^{2}}{4}

 \bf \implies 4{AB}^{2}={BD}^{2}+{AC}^{2}

 \bf \implies {AB}^{2}+{AB}^{2}+{AB}^{2}+{AB}^{2}={BD}^{2}+{AC}^{2}

 \bf \implies {AB}^{2}+{BC}^{2}+{CD}^{2}+{DA}^{2}={BD}^{2}+{AC}^{2}\longrightarrow \Big(\because AB=BC=CD=DA\Big)

 {\implies {\blue {\boxed {\boxed {\purple {\mathfrak {{AB}^{2}+{BC}^{2}+{CD}^{2}+{DA}^{2}={BD}^{2}+{AC}^{2}}}}}}}}

{\red{\underline {\overline {\pmb {\sf {\pmb {{\therefore} Hence\:Proved}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Area\:of \:rhombus =\dfrac{d_1 \times d_2}{2}

 \sf Perimeter\:of \:rhombus =4a

Attachments:
Similar questions