ABCD is a rombus with area 32root3cm²
find the area of shaded region or major section
O is center of circle
Answers
Gɪᴠᴇɴ :-
- Area of Rhombus = 32√3cm².
- AO , CO sides & Diagonal BO are radius of given circle .
Tᴏ Fɪɴᴅ :-
- Area of shaded Region ?
Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-
- Rhombus diagonals bisect each other at 90°.
- Area of Rhombus = (1/2) * Diagonal₁ * Diagonal₂ .
- Area of circle = π * (radius)².
Sᴏʟᴜᴛɪᴏɴ :-
Let us Assume that, radius of circle is r cm.
So,
→ BO = AO = CO = r cm.
Now, Let the diagonals OB & AC intersect at D.
Than,
→ OD = DB = r/2
→ AD = CD .
So, In right ΔODA, By Pythagoras theorem, we get :-
→ OA² = OD² + AD²
→ r² = (r/2)² + AD²
→ AD² = r² - (r/2)²
→ AD² = 3r²/4
→ AD = (√3r/2)
Than,
→ AC = 2AD = √3r
Therefore,
→ Area of Rhombus = 1/2 * D₁ * D₂ = 1/2 * OD * AC
→ 32√3 = 1/2 * r * √3r
→ 32 = (1/2) * r²
→ r² = 64
→ r = 8cm.
Hence,
→ Area of given Circle = πr² = 3.14 * 64 = 200.96cm.²
And,
→ Area of Rhombus = 32√3 = 32 * 1.73 = 55.36cm².
So,
→ Shaded Area = Area of circle - Area of Rhombus
→ Shaded Area = 200.96 - 55.36 = 145.6cm². (Ans.)
Answer :
- We get shaded region by subtracting total circle area from rhombus area.
Let us assume that radius of the circle is " r " cm
Let the diagonals DB & AC intersect at O.
⇒ OD = OB = r/2
& OA = OC
Now in Δ AOD , by using Pythagoras Theorem ,
AD² = OA² + OD²
⇒ r² = (OA)² + (r/2)²
⇒ r² - (r/2)² = (OA)²
⇒ 3r²/4 = (OA)²
⇒ OA = √3 r/2
AC = 2 (OA)= √3 r
So , AC = √3 r , BD = r
So , we find the two diagonals of rhombus .
- Area of Rhombus = 1/2*d1*d2
⇒ Area of rhombus = 32√3
⇒ 1/2*√3 r*r = 32√3
⇒ r² = 64
⇒ r = 8 cm
So ,
- Area of circle = πr²
⇒ Area of circle = 64π cm² ... (1)
Area of Rhombus = 32√3 cm² ... (2)
- Area of shaded region = Area of circle - Area of Rhombus
⇒ Area of shaded region = 64π - 32√3
⇒ Area of shaded region = 200.96 - 55.36