Math, asked by Rosh3782, 1 year ago

ABCD IS A SQUARE E F AND G ARE MIDPOINTS OF SIDE AB BC CD RESPECTIELY PROVE THAT THE TRINGLES AEF AND DGF ARE CONGRUENT

Answers

Answered by abhi569
18
 \bold{ \: \underline{In \: \: \square \: \: ABCD , \: \: all \: \: sides \: \: will \: \: be \: \: equal \: \: as \: \: it \: \: is \: \: a \: \: square. }}



 \bold{ \: So, <br />AB = BC = CD = DA }





And ,
 \bold{E \: is \: the \: mid \: point \: of \: AB} \\ \bold{<br />F \: is \: the \: mid \: point \: of \: BC} \\ \bold{<br />G \: is \: the \: mid \: point \: of \: CD}


 \bold{So, } \\ \\ \bold{<br /><br /><br /><br />AE = EB = \frac{AB}{2} \: \: \: \: \: \: \: \: \: \: \: \: ...(i)} \\ \\ \bold{<br />BF = FC = \frac{ BC}{2} \: \: \: \: \: \: \: \: \: \: \: ...(ii)} \\ \\ \bold{<br />CG = GD = \frac{ CD }{2} \: \: \: \: \: \: \: \: \: ...(iii)}




And,


 \bold{<br />We \: know, all \: angles \: of \: a \: Square \: are \: 90°}







In ∆ BEF,

 \bold{Hence,By \: P ythagoras \: Theorem, <br /><br />} \\ \\ \bold{ \: <br /><br />EB^{2} + BF^{2} = EF^{2}} \: \: \: \: \: ..(iv)



In ∆ GFC,

<br />\bold{GC^{2} +CF^{2} = GF^{2} } \\ \\ \\ \bold{from \: (i) \: and \: (ii)} \\ \\ \\ \\ \\ \bold{{( \frac{CD}{2} )}^{2} + {( \frac{BC }{2}) }^{2} = {GF}^{2} }\\ \\ \\ \bold{{( \frac{ AB }{2}) }^{2} + {( \frac{BC }{2} )}^{2} = { GF}^{2} } \\ \\ \\ \bold{{E B}^{2} + {BF}^{2} = {GF}^{2} } \: \: \: \: \: \: \: \: ...(v)





 \bold{We \: know, sides \: are \: equal, }

 \bold{AB = CD} \\ \\ \bold<br /><br />{<br />Divide \: both \: sides \: by \: 2} \: <br />\\ \\ \\ \\ <br /><br />\frac{AB}{2} = \frac{ CD }{2} \\ \\ \\ \bold{AE = EB = GD = GC<br /><br />} \\ \\ \\ \bold{ AE = GD} \: \: \: \: \: \: \: \: \: ...(vi)





In ∆ ABF,

<br />\bold{Now,<br /><br />Again \: by \: Pythagoras \: theorem, <br />}<br />\\ \\ \bold{<br /><br />AB^{2} + BF^{2} = AF^{2}} \: \: \: \: \: \: \: \: \: ...(vii)





In ∆ DFC,

 \bold{CD^{2} + CF^{2} =DF^{2}<br />} \\ \\ \bold{<br />AB^{2} + BF^{2} = DF^{2} \: \: \: \: \: ...(viii) \: \: \: \: \: \: \: \: \: \: [ All \: sides \: are \: equal \: so \: CD = AD \: and \: CF = \frac{ BC}{2}= BF] }









Hence,


• ( iv ) = ( v )
EF² = GF²
EF = GF



• AE = GD [ From ( vi ) ]



• ( vii ) =( viii )
AF² = DF²
AF = DF





Hence,
 \bold{AEF \cong \: DGF \: \: By \: \: S.S.S <br />}
Attachments:

Noah11: Amazing effort! :)
abhi569: (-;
BrainlyPrincess: awesome answer Abhi ji☺
BrainlyPrincess: And nice presentation
abhi569: (-;
skh2: nice work!! mehnat safal hui! Great keep it up
abhi569: (-;
Anonymous: Amazing answer bhaiya :)
abhi569: (-:
Answered by usha977113
6

THIS is proved above.

MAY THIS WILL HELP YOU A LOT

THANX...

Attachments:
Similar questions