Math, asked by charuguptaldh93, 10 months ago

ABCD is a square of side 12 cm and E is a point in the interior of ABCD. If ∠EDC = ∠ECD = 15°, then find the perimeter of ΔAEB. Please tell

Answers

Answered by sonuvuce
6

Perimeter of ΔAEB is 36 cm

Step-by-step explanation:

As shown in the attached figure

In \Delta EDC \text{ and } \Delta BCE

\because \angle EDC=\angle ECD =15^\circ

\therefore ED=EC

\angle ADE=90^\circ-15^\circ=75^\circ

\angle BCE=90^\circ-15^\circ=75^\circ

Therefore,

\angle ADE=\angle BCE

In \Delta ADE \text{ and }\Delta BCE

\because AD=BC=12 cm

ED=EC

\angle ADE=\angle BCE

\therefore \Delta ADE \cong \Delta BCE     (SAS congruity rule)

\therefore \angle AED=\angle BED=\theta (assume)

And AE=BE

\implies \angle EAB=\angle EBA

i.e. \Delta AEB is an isosceles triangle

Around point E

150^\circ +\theta+\theta+\angle AEB=360^\circ

\implies \angle AEB=210^\circ-2\theta

Again in \Delta AEB

\angle EAB+\angle EBA+\angle AEB=180^\circ

\implies 2\angle EAB+210^\circ-2\theta=180^\circ

\implies 2\angle EAB=-30^\circ+2\theta

\implies \angle EAB=\theta-15^\circ

\therefore \angle EBA=\theta-15^\circ

\angle DAE=90^\circ-\angle EAB

\implies \angle DAE=105^\circ-\theta

In \Delta EDC

By sine rule

\frac{\sin 150^\circ}{12}=\frac{\sin 15^\circ}{ED}

\implies \frac{\sin 30^\circ}{12}=\frac{\sin 15^\circ}{ED}

\implies ED=24\sin 15^\circ

In \Delta AED

By sine rule

\frac{\sin\theta}{12}=\frac{\sin (105^\circ-\theta)}{24\sin 15^\circ}

\implies \frac{24\sin 15^\circ}{12}=\frac{1}{\sin\theta}(\sin 105^\circ\cos \theta-\cos 105^\circ\sin \theta)

\implies 2\sin 15^\circ=\sin 75^\circ\cot\theta-\cos (90^\circ+15^\circ)

\implies 2\sin 15^\circ=\sin 75^\circ\cot\theta+\sin 15^\circ

\implies \sin 15^\circ=\sin (90^\circ-15^\circ)\cot\theta

\implies \sin 15^\circ=\cos 15^\circ\cot\theta

\implies \cot\theta=\frac{\sin 15^\circ}{\cos 15^\circ}

\implies \cot\theta=\tan 15^\circ

\implies \cot\theta=\tan (90^\circ-75^\circ)

\implies \cot\theta=\cot 75^\circ

\implies \theta=75^\circ

\therefore\angle EAB=\angle EBA=75^\circ-15^\circ=60^\circ

Thus \Delta AEB is an equilateral triangle

Therefore,

EA=EB=AB=12 cm

Thus, the perimeter of \Delta AEB

P=12+12+12

\implies P=36 cm

Hope this answer is helpful.

Know More:

Q: ABCD is a square of side 4 cm. If E is a point in the interior of the square such that ΔCED is equilateral, then area of Δ ACE is:

Click Here: https://brainly.in/question/9598254

Attachments:
Similar questions